2020年12月23日
今週はACE2の転写に関する論文が3報も出ていた。Nature Genetics12月号に掲載された2報の論文は、1型インターフェロンにより誘導されるACE2は普通の分子ではなく、大きな欠損がありCovid-19とは結合しない分子であることを示した(NATURE GENETICS | VOL 52 | DECEMBER 2020 | 1283–1293, NATURE GENETiCS | VOL 52 | DECEMBER 2020 | 1294–1302)。最初の頃ウイルス感染により誘導されるインターフェロンでACE2が誘導されることで感染がさらに広がる心配があると懸念されたが、この心配はないことを示した論文だ。
今日詳しく紹介するのはミシガン大学からの論文で、男性ホルモンによるACE2とCovid-19の膜融合時に働くTMPRSS2の発現を調べた論文で12月18日米国アカデミー紀要にオンライン掲載された。タイトルは「Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2(SARS-CoV-2の侵入に必要な因子ACE2とTMPRSS2の転写調節を標的にする)」だ。
これほど猛烈な勢いでCovid-19の研究や治療開発が進むと、各人の研究も知らないうちに時代遅れになってウカウカしておられない心配がある。その一つが、ウイルスが細胞へ侵入する時に使うACE2やTMPRSS2などの分子に対して作用する薬剤の開発だろう。というのも、ウイルス侵入阻害という点では、モノクローナル抗体治療が最も初期段階で優れている様に思うからだ。ただ、以前免疫が抑制されている白血病の患者さんでも、感染が鼻で止まって無症状のままウイルスを排出し続けた症例を紹介したが(https://aasj.jp/news/watch/14412)、感染が重症化へと進展する最初の段階は、肺の細胞への感染で、この段階の抑制は最初の重要な課題だが、この段階は予防と治療の境にある。すなわち、症状が出るか出ないかのうちに治療を始める必要があるだろう。とすると、抗体薬の可能性はもう少し進んだ段階に限られるので、コストの点および気道スプレーの様な使い方が可能な点で、ACE2やTMPRSS2の機能阻害や転写阻害に関わる薬剤もまだまだ捨てたものではなく、是非開発を続けて欲しいと思う。
この研究はACE2とTMPRSS2の発現を同時に阻害する、既に認可されている薬剤を特定することを目的としている。よく読んでみると、特に新しい発想があるわけではないが、この分野をまとめて考えてみるいい機会になった。
男性の高齢者が肺炎へ移行する確率が高いこと、さらには前立腺癌治療でアンドロジェン受容体阻害剤を使っている患者さんでは、感染率が低かったという論文から、アンドロジェンによりACE2やTMPRSS2の転写が調節されている可能性が示唆されている。この論文はこの可能性の再検討と言える。まず、AT2と呼ばれる肺胞細胞でアンドロジェン受容体とともにACE2、TMPRSS2が強く発現していることを確認する。後は、細胞株を用いたり、マウスを用いたり、雑然とした結果が続くので割愛して、人間についての結果だけを紹介すると、in situ hybridizationを用いた検討から、気道の ACE2、TMPRSS2、そしてアンドロジェン受容体の発現が男性で高く、また喫煙者ではアンドロジェン受容体はさらに上昇することを示している。最後に、細胞レベルの研究で、この3者の発現は、既にFDA認可されているアンドロジェン受容体阻害剤、あるいはエンハンサーとプロモーターを繋ぐコファクターBRD阻害剤で抑えられることを示している。
以上が結果で、いくつかの阻害剤を培養系で再検査したという以外、アンドロジェンとACE2の関係などは新しい話ではない。またデータの質は低く、可能性を指摘するために論文を書いたといった印象が強い。
ただ、現在治験が行われているTMPRSS2阻害剤も含めて、この様な薬剤をいつ使えばいいか考えてみるのは、抗体薬が利用できる様になった今、面白い様に思う。既に述べたが、Covid-19の場合、多くの人では鼻かぜで終わるが、進行するケースでの肺への進展の早さが問題になる。したがって、鼻から肺への進展を止めるとなると、予防と治療の境界領域を対象にする治療が必要になる。この段階の治療戦略は、例えば抗インフルエンザ薬を予防に使うといった話とは少し違っており、新しい構想が必要で、その意味で気道へのアプローチ可能な薬剤のリストを増やすことは重要だと思う。
2020年12月22日
かってサイトカイン研究は我が国の免疫学や血液学のお家芸で、この時代を作った研究者の多くは、現在も様々な分野で活躍している。今でこそチェックポイント治療で知られる本庶先生だが、私が独立して熊本大学にいる頃、IL-4やIL-5遺伝子のクローニングで華々しくサイトカイン研究の第一線を担っていた。当時この分野での本庶グループの大きな貢献の一つがIL-2受容体(CD25)の遺伝子クローニングだろう。
ただIL-2受容体はCD25にとどまらず、その後の研究でなんとα、β、γの3種類(現在では、CD25、CD122、CD132)の3種類が存在することがわかり、しかもαだけ、βγ、αβγの異なる組み合わせが、異なる細胞で発現して、下流のシグナルもかなり違うことがわかった。最初サイトカイン研究の1丁目1番地として応用が期待されたIL-2も、そのままだと多様な細胞に効果を示すことから、臨床応用が阻まれている。
この状況を変えるために、IL-2の構造を変化させてαに結合できなくして、刺激する対象を絞る方法が開発され、βγに特異的に結合して、キラー細胞だけを増殖させるIL-2が作成されている(https://aasj.jp/news/watch/9537)。もう一つの方法は、IL-2とそれぞれの受容体との接触部位に対する抗体を作成し、例えばαだけに結合する様に操作する方法だ。αはTregの最も重要なマーカーであることから、特にTreg選択的操作が可能になるのではと期待されている。事実、マウスではその様なモノクローナル抗体が開発され、Treg増殖に使えることが示されている。
今日紹介するチューリッヒ大学からの論文は、ヒトIL-2がα受容体に選択的に結合できるモノクローナル抗体(mAb)を開発し、Tregを体内で選択的に増やすことができることを示した論文で12月16日号のScience Translational Medicineに掲載された。タイトルは「Receptor-gated IL-2 delivery by an anti-human IL-2 antibody activates regulatory T cells in three different species(IL-2に対する抗体を用いてIL-2結合受容体を制限することで3つの種でTregを活性化できる)」だ。
この研究ではなんと1万種類のIL-2に対するモノクローナル抗体を、それぞれの受容体の組み合わせを発現した細胞でスクリーニングし、αが発現している細胞だけにIL-2が結合する様になるmAbを選んでいる。
こうして選んだ数種類の抗体の中から、Tregの増殖を誘導する能力が高いmAbを選び、さらに詳しく検討すると、IL-2のγδへの結合を抑えるというだけでなく、IL-2がαに結合した後、すぐにIL-2から遊離してIL-2を直接αに受け渡せる能力がある抗体だけが、高い活性を持つことを示している。また、構造解析から、この可能性を確認している。
もともとαだけを発現している細胞へのIL-2の親和性は弱いため、このモノクローナル抗体は、IL-2を三種類の受容体全てを発現した細胞へ選択的に連れてきて、その後受容体にIL-2を完全に受け渡すことができる。もちろん、三種類の受容体を発現しているT細胞はTregだけではないが、この抗体とIL-2をマウスに注射すると、FoxP3陽性のTregが強く誘導される。
最後に、ヒトでも使える様に抗体をヒト化した後、試験管内でヒト末梢血と培養すると、FoxP3陽性のTregをかなり選択的に増殖させることができる。また、ヒトの代わりにサルに投与する実験を行い、強くTregの増殖を誘導できることを示している。
詳細はかなり飛ばしたが、以上が結果で、人間の体内でTregを選択的に増殖させる方法ができたのではと期待する。今やTregを疑う人はいないが、臨床応用となると様々なハードルがある。その一つ、選択的増殖に手がかかったことの意義は大きい。
2020年12月21日
ガン細胞を栄養代謝レベルで弱らせる戦略の開発が進んでおり、例えば断食と同じ効果がある1週間の食事プログラムを毎月続けるだけで乳ガンの治療効果が高まることを以前紹介した(https://aasj.jp/news/watch/13544)。さらにアミノ酸代謝になるとガンと正常の違いは大きく、ガンを弱らせるアミノ酸制限食の開発に期待が集まっている(今年6月にCell Metabolismに発表された総説は一読をお勧めする: Molecular Cell 78, 1034 ,June 18, 2020)。その一つがトリプトファン代謝で、IDO1酵素によりトリプトファンはT細胞免疫抑制分子Kynurenineに転換されて抗ガン免疫を抑えるため、トリプトファン制限により免疫を高める可能性が調べられている。
今日紹介するイスラエル・ワイズマン研究所とオランダ・ガン研究所からの論文は、トリプトファン欠乏により起こる翻訳異常を追求する中で、インターフェロンによりガン免疫が高められるメカニズムを解明した研究で12月16日Natureにオンライン掲載された。タイトルは「Anti-tumour immunity induces aberrant peptide presentation in melanoma(抗腫瘍免疫はメラノーマの異常なペプチド提示を誘導する)」だ。
既に紹介した様に、ガン免疫を抑制するKinurenineはトリプトファンからIDO1により合成されるが、このIDO1はガン免疫に関わるT細胞から分泌されるインターフェロンγ(IFNγ)により誘導される。すなわち、一種のフィードバック・チェックポイントが形成される。従って、IDO1を阻害してやればこのチェックポイントは無効になると考えられるが、実際には臨床的効果ははっきりしない。
事実IFNγには確実に抗ガン作用があり、Kinurenine誘導だけを考えると全体像は見えない。この研究ではIFNγによるトリプトファン代謝異常にガン免疫を高める効果がないか調べる中で、オランダ・ガン研究所のグループが開発した、アミノ酸欠乏により誘導される翻訳異常を調べるdiricoreと呼ばれる方法を利用しようと思いついた。
Diricoreはリボゾームのトンネル中に存在するmRNAだけを取り出して配列を決定する方法だが、アミノ酸欠乏で翻訳が止まるプロセスを解析するのに用いられ、ガンのアミノ酸代謝研究に大きな貢献をしている方法だ。もし、IFNγによりIDO1が誘導され、トリプトファン欠乏が起これば、当然トリプトファン特異的な変化がdiricoreで捉えられる。
実際、メラノーマをIFNγで処理すると、トリプトファンコドン下流で翻訳が停止することがわかる。ただ、IFNγで処理した場合、翻訳が止まるだけでなく、そのすぐ下流での翻訳停止が多発することを示す、彼らがW-bumpと呼ぶパターンが観察される。
詳しく調べると、トリプトファン欠乏で止まりかけた翻訳が、なんとかフレームを変化させて次のトリプトファンやストップコドンで止まるまで、翻訳を続けた結果であることがわかった。
とすると、次の翻訳停止までにできたタンパク質は自然には存在しないアミノ酸ということになり、当然ガンのネオ抗原として利用される可能性が浮かび上がる。これを調べるため、IFNγ処理した細胞の質量分析を行い、124種類のフレームがずれたペプチドが存在し、そのうち41種類は、偶然ではなく繰り返し現れることを示している。最後に、これらがガンのネオ抗原として働くことを細胞培養系で確かめている。
免疫に関与するペプチド解析はかなり綿密に行われており、割愛してしまったが、インターフェロンがkinurenineの合成と、ネオ抗原の誘導という、2面性を持つことを示した力作だと思う。ただ、kinurenine合成の問題は、トリプトファン制限により解消できるはずなので、癌の免疫療法を高めるという視点では、面白い論文だった。
2020年12月20日
分野を問わず科学論文を楽しもうとこのコーナーを始めて8年近くになり、紹介した論文も3000に近づいているが、嫌っているわけでは無いが紹介するモチベーションが湧きにくいエアーポケットの様な分野が存在する。その一つがmiRNAで、ノーベル賞も与えられた重要分野だとはわかっていても、ほとんど取り上げてこなかった。その理由は、一つ一つのmiRNAは多数の標的を持つため、その効果がわかりにくい点があった。
今日紹介するハーバード大学からの論文は、それ自身は面白いが、miRNAの調節機構の複雑性を示し、またmiRNAを敬遠する原因になるのではと感じる研究で12月18日号のScienceに掲載された。タイトルは「The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation(ZSWIM8ユビキチンリガーゼは標的特異的マイクロRNA分解を媒介する)」だ。
生命科学の知識がある人なら、このタイトルを見るだけで「ナニナニ?ユビキチンリガーゼがmiRNAの分解に関わるだと?」、と惹きつけられるだろう。タンパク質分解システムがなぜmiRNA分解に関わるのか?それを知ろうと読み進めると、miRNAはもともと細胞内で寿命が長く、しかもmiRNAごとにその寿命が異なっている。極端な例だと1週間も細胞内で安定に存在するものがある様だ。
寿命が長い理由はmiRNAが標的RNAを分解するためArgonauteに結合すると、最終的な分解はmiRNAを分解するための特異的なシステムが存在することがわかっていた(私にとっては初耳)。
この研究ではmiRNAのなかのmiR-7に絞って、この分解のスイッチを入れることがわかったlong noncoding RNA CYRANOと協調する分子を探索し、最終的にZSWIM8を特定、この分子の機能をとおして、miRNAの分解機構を調べている。
膨大なプロの仕事で、ほとんど割愛するが、基本的にはCYRANOと結合したmiR-7の5‘末に伸びたRNAをZSWIM8が認識して、ここにユビキチンリガーゼシステムをリクルートし、Argonoutをユビキチン化して分解することを示している。その結果、Argonoutに守られなくなったRNA はすぐに細胞内で分解されてしまうことを示している。すなわち、miRNAを分解するために、なんとそれを守っているタンパク質、Argonoutを分解するというわけだ。
ただ、このシステムが動きうるmiRNAは、全体のほんの一部で、ショウジョウバエや線虫も入れて高々33種類しか無い。他のRNAは全く別のシステムで分解されているよで、これがmiRNAの寿命が極めて多様な原因の一つになっている。
しかし、RNAを認識するタンパク質を分解するこのシステムは、うまくいけばクリスパーの様に、タンパク質を特異的に分解する面白い系に発展できるかもしれないし、さらにRNAワクチンの効果を高める方法にもつながるかもしれない。これほどの複雑性がわかりmiRNAに対する印象はますます悪くなったが、研究自体は大変面白かった。
2020年12月19日
麻酔に使うより少し低い量のケタミンを投与すると、うつ病症状を1週間程度抑えることができ、生理学的研究が進んでいる。このブログでも、2回にわたって紹介しているが、重要なのはケタミンが神経軸索のスパインの数や構造の変化を伴う可塑性に関わっている点だ(https://aasj.jp/news/watch/3687)。
今日紹介するカナダ・マクギル大学からの論文はこの可塑性の変化がなんとmTORCを介する翻訳機構の変化を介して起こっていることを示した研究で、12月16日Natureにオンライン出版された。タイトルは「Antidepressant actions of ketamine engage cell-specific translation via eIF4E (ケタミンの抗うつ作用はeIF4Eを介する細胞特異的翻訳に関わる)」だ。
もちろんケタミン自体はNMDA受容体の阻害剤として麻酔効果を及ぼすことは知られているが、抗うつ作用はケタミン由来の代謝物hydroxynorketamin(HK)が低い親和性でNMDA受容体に結合する結果だと考えられる様になっている。さらに、このHKの抗うつ作用がmTORCの阻害剤であるラパマイシンにより阻害することも明らかになり、さらに下流シグナルを探索する研究が進んできた。
この研究では様々なmTORCの作用のうち、もともとシナプス可塑性に関わることが知られていた4E―BPリン酸化制御によるmRNA翻訳開始機構がケタミンの抗うつ作用の標的分子ではないかと構想し、3種類ある4E-BPファミリー分子のうち脳で発現しているBP1とBP2をそれぞれノックアウトしたマウスで、ケタミンの作用を調べている。
結果は予想通りで、マウスの動きが落ちる状況で(これをうつ状態としている)ケタミンを注射すると、動きが回復するが、BP1、BP2いずれをノックアウトしたマウスでもこの回復が見られなくなる。一方、セロトニン阻害剤注射に対しては、正常もノックアウトマウスも全く同じ程度に反応する。
これはケタミンの代わりにHKで刺激した時も同じで、ケタミンの抗うつ効果は、これまで考えられてきた様に、ケタミンの代謝物がNMDA受容体を弱く刺激した結果、mTORCを介してmRNA翻訳を変化させ、この結果シナプスの可塑性が変化する結果であることを示唆している。
この研究では興奮神経細胞、及び抑制性介在神経細胞それぞれでBPをノックアウトする実験も行い、HKの効果には両方の細胞が必要で、これらのシグナルは興奮、抑制両方の神経の代謝変化を誘導することで、長期のシナプス可塑性を高め、うつ状態に抵抗力を与えることが明らかになった。
以上わりと単純な研究だが、病態、生理学、生化学を結合させる重要な研究で、今後これまでとは異なる新しい抗うつ薬を開発するために役立つのではと期待する。もう一つの新しい抗うつ治療、脳の電磁場刺激などと組み合わせて考えるとさらに面白い可能性が生まれるかもしれない。
2020年12月18日
重症の新型コロナウイルス(Covid-19)肺炎に対する治療がどの様に行われているのかは、統計的に処理された論文からはなかなか窺い知ることはできない。しかし、医師の判断による特別の治療を受けた患者さんについての症例報告からは、様々なことがわかる。
今日紹介するシカゴのノースウェスタン大学病院から、12月16日号のScience Translational Medicineに発表された論文は、まずタイトル「Lung transplantation for patients with severe COVID-19(重症Covid-19患者さんに対する肺移植)」を見て驚いた。「Covid-19で医療が逼迫しているときに、ドナーが見つかるとしても、感染症による呼吸不全に対して肺移植がアメリカでは許されるのだろうか?」というのが率直な疑問だった。もちろん、論文を読んだ後もこの印象は変わらないし、まず日本では不可能だろうと思う。
とはいえ、この大学では3例も肺移植を行い、3例とも現時点では寛解している。ではどんな患者さんだったのか見てみよう。
28歳女性、基礎疾患は視神経脊髄炎で免疫抑制治療中にCoV2感染、急速に重症化し人工呼吸、最終的にECMO。治療中にセラチア感染。治療はセラチアに対する抗生剤、レムデシビル、クロロキン、IL6抗体、そして回復患者血清。ウイルスは消失しても、症状改善なく肺移植により回復、退院。
62歳男性、基礎疾患高血圧。感染後急速に悪化、ECMO。入院中緑膿菌感染。治療は抗生剤、レムデシビル、回復者血清、デキサメサゾン。ウイルスは4週間で消失。しかし肺機能回復なく、緑膿菌感染進行もあり、肺移植の結果回復退院。
43歳男性、基礎疾患糖尿病。感染後人工呼吸器を経てECMO。経過中に様々な循環器障害、肺症状、脳卒中などを合併。治療は抗生剤、レムデシビル、回復者血清。4週以降はウイルス消失も、症状回復せず、肺移植。現在入院してリハビリ中。
これら重症3症例からわかるのは、この大学ではレムデシビルと回復者血清が標準的に治療に使われていることで、しかもこれほど重症でも、ウイルスを除去するのに成功している点だ。原理的に考えると、レムデシビル、中和抗体は感染拡大に効果が高いことは間違い無い。ただ、治験で重傷者にそれほど効果がない様に見えるのは、重傷者の多くがウイルス感染による病気から、感染により誘導されたとしても、もはやウイルスの関与がない合併症に移行しているからといえる。
すなわち、重傷者に対する抗ウイルス療法の治験結果の解釈には注意が必要で、ウイルス除去に成功したかどうか必ず示されるべきだろう。
さらに我が国の現状はわからないが、人工呼吸器やECMOが必要な段階に入ると、治療による合併症とともに、新たに細菌感染が起こることで、これが病気をさらに治りにくくしていることもわかる。
では、ウイルス感染による肺炎から移行した次の段階とは何か?この研究では、組織学的解析とともに、肺移植時に切除した患者さんの肺から細胞を調整して、Single cellトランスクリプトーム検査を行い、貴重な症例から徹底的に学ぼうとしている。
詳細は省くが、組織学的には、マクロファージを主役とする線維化へのスイッチが入ってしまい、もはや回復できない複雑な病理像へと転がり落ちると形容できる状態が起こっている。ただ、この状態は、決してウイルス感染だけによりスイッチが入るのではなく、炎症や、人工呼吸器による損傷、合併する細菌感染など様々な要因が集まる、難しい状態であることがわかる。そして、この状態は肺移植しか救いようが無い。ただ、組織で調べても、ウイルスは完全に除去できていることも確認している。
これらの結果に基づき、ケラチン17陽性、ケラチン5陰性の肺胞細胞の出現が、感染症から線維症への転換を示すマーカーになることなど、アドバイスが行われているが、詳細は省く。
Covid-19患者さんへの肺移植が行われるとはまず考えられない我が国だが、今日紹介した様な、逼迫する医療の中で行われた驚くほど冷静な臨床研究は、学ぶことが多い。例えば、我が国で2週間以上入院している重症例でのウイルス検査成績など、この研究を見て是非知りたいと思った。
2020年12月17日
2028年完成予定で、JR大阪駅北側の再開発が始動しましたが、私たちAASJは町づくり計画の一つとして、阪急阪神不動産とともに、科学知識を共有するため一般市民からアカデミアまで、階層なしに集まるネットワークを目指す「参加型ヘルスケア」を提案し、採択されています。今年初めには、推進のための委員会も発足し、これから始動という時に、新型コロナ感染によりあらゆる活動をストップせざるを得なくなりました。
ただ、10月より何回かのウェッブ会議を経て、私たちが考える科学知識の共有とは何かについて理解してもらうために、委員会のメンバーの対談を、コンテンツとして配信しようと言うことになりました。
その最初として、参加型ヘルスケアの趣旨を紹介するとともに、今注目の新型コロナウイルスに対するRNAワクチンの科学知識を例に、私たちの目標を理解してもらうための座談会を行い、アップしました。是非多くの方にご覧いただきたいと思っています。
新型コロナウイルスに対するワクチンが主題になっていますが、ここでお話ししたことは、私たちの判断を決して押し付けるものではなく、あくまでも科学的知識をわかりやすく共有していただいて、皆さんの決断に役立ててほしいと思って作成していることをご理解ください。
ビデオは https://umekita2nd-isk.com/symposium/webinar/ をご覧ください。
2020年12月17日
私たちは毎日様々な予想や期待を頭に浮かべながら行動し、うまくいけば行動を正当化し、期待が裏切られると反省して、期待確率を常に変化させる。パブロフの犬もこの行動に含まれるが、この様な期待と現実の一致する統計確率を学習することが私たちの生存に必須の条件であるとして、多くの研究が行われている。この報償回路はドーパミン作動性神経によりコントロールされているが、具体的にどの過程に関わるか明らかにするのは簡単でない。というのも、マウスの期待と落胆や満足を正確に理解することが難しいためだ。従って、マウスの期待と現実をできるだけ正確に測定するための課題設定がこの研究分野の鍵になる。
この様な期待に基づく行動過程で、線条体の神経活動が1−2秒ぐらいのサイクルの大きな周波数の波に同調していることが知られている。この波は、将来得られる褒美の価値に対応すると考えられてきたが、最近コンピューター科学から提唱されたTemporal Difference learning、すなわち次の瞬間の期待度と、次の瞬間での期待度の違いで表される指標(RPE)、言い換えると期待が裏切られた量と関係しているとする説が受け入れられる様になった。とはいえ、これから得られる価値への期待の高まりと、RPEは密接にリンクしており、それを正確に区別することは簡単でない。
今日紹介するハーバード大学からの論文は時間を超えるという経験をマウスにさせることで次の瞬間についての期待と現実とを大きく変化させることで、実際の褒美の期待度から切り離してRPEを測る課題を設計し、この問題にチャレンジした研究で12月10日号のCellに掲載された。タイトルは「A Unified Framework for Dopamine Signals across Timescales (時間経過に伴うドーパミンシグナルの統一的フレームワーク)」で、責任著者は内田直重さん。
この研究では風景が変わる道を一定距離走るとジュースにありつけるという課題を覚えさせ、この道をもう一度景色を見ながら走る間ジュースへの期待が高まるという設定を作る。この間にドーパミン神経の活動のまとまり、特にrampingと呼ばれるゆっくりとした波ををfiber fluorometoryという方法で測定している。
結果は期待度ではなく、RPEとドーパミン神経の興奮周期が相関することを示したのだが、この研究のポイントはなんといってもRPEと期待度を切り離すための課題設計だろう。
学習した道をジュースを期待しながら走っている間、当然期待度は時間と共に上がっていく。この時、著者らがテレポーテーションと呼ぶ、すなわち次の瞬間途中の道がすっ飛んで、ジュースに近い地点が次の瞬間現れるという経験をさせる課題だ。実際には、道を走ってジュースにありつくという課題を全てバーチャルリアリティーで再現しているため、テレポーテーションが可能になる。
人間でも知らされずにそんなことが起こったら戸惑うが、テレポーテーションのトリックなど考えもつかないマウスにすれば、ゴールの方が次の瞬間近づいてくるので、期待は大きく外れる。しかし、その地点がもつジュースへの距離、すなわち期待度は同じなので、この時脳の活動が変化すれば、RPEをコードしていたことになる。また、テレポーテーションの距離の長短は、予想が裏切られた量に比例することになる。
他にも異なる道に急に移されたりなど、要するに他の場所に瞬間移動するというSFをマウスに経験させる課題で、この課題を読むだけでこの研究が分かった気になる面白い論文だ。
あとは、ドーパミン神経の活動だけでなく、実際のドーパミン濃度の周期的変化もRPEと関わること、個々の神経興奮レベルでこの周期が形成されること、匂いのシグナルで期待を変化させる実験などを行なっているが、詳細は省く。要するに、素晴らしい課題設計で、脳回路のアルゴリズムに、コンピュータサイエンスのアルゴリズムを当てはめられることを示した研究だと言える。この分野は、まさに科学とはかけ離れた様に見える倫理や道徳につながる分野なので、大きく期待している。
2020年12月16日
チェックポイント治療が導入されるまで、ガンの免疫療法というと、腫瘍に浸潤しているT細胞を体外で増殖させたあと患者さんに戻してガンを殺させる細胞移植治療のことを指していた。これに遺伝子操作を加えたバージョンがCAR-T治療で、ガン抗原特定している分効率が高まっているが、原理は同じだ。
ガンの細胞治療の草分けは、米国国立衛生研究所のRosenbergだが、今日紹介する論文は、チェックポイント治療導入後も、このグループが細胞治療の問題を改善しようと懸命の努力をしていることがよくわかる研究で12月11日号のScienceに掲載された。タイトルは「Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer(ヒトの癌に対する免疫細胞移植治療の成否は幹細胞様CD8T細胞が決めている)」だ。
この研究ではまず、チェックポイント治療など免疫治療はまだ受けたことのない、ステージ4のメラノーマ患者さんの腫瘍内T細胞(TIL)を移植前にCyToFと呼ばれるマルチパラメーター細胞解析で調べ、移植後臨床経過を調べ、ガンが退縮したグループと、退縮しなかったグループで、TIL中に存在する細胞に違いがあるか調べている。
結果は明瞭で、移植したキラー細胞の中でCD39陰性CD69陰性の記憶型細胞の数が、患者さんの生存期間と完全に相関することが明らかになった。この発見、すなわち抗原に反応して自己再生を繰り返す能力を持ったキラー細胞を用意できるかどうかが細胞治療の成否を決めるという発見がこの研究の全てで、あとは、他の方法を用いてこのことを確認しているに過ぎない。
まず、single cell RNAseq、すなわち転写レベルでこのことを確認している。
問題は、これまでの研究で、腫瘍のネオ抗原に反応する細胞はCD39–CD69–(double negatie:DN)ではなく、両方陽性(double positive:DP)のエフェクター細胞であることが知られていることで、今回の結果はネオ抗原特異性細胞が重要とするこれまでの結果と矛盾する。
そこでもう一度、細胞治療が効果を示した人について調べ直すと、治療効果が見られた移植細胞ではネオ抗原特異的細胞はCD39陰性分画に存在することがわかり、ホストの中で長く生存できる抗原特異的なメモリーT細胞が調整できたかが治療効果を作用することが明らかになった。
最後に、細胞治療で完全に寛解した一人の患者さんの末梢血を追跡し、患者さんの体内で持続しているネオ抗原特異的T細胞はDNポピュレーションに存在することも確認している。
以上の結果は、TILを調整した時、うまく抗原特異的メモリーT細胞の多い細胞が調整できると、患者さんの予後がよくなることを示しているが、これを確認するためにマウスにメラノーマを移植する実験系で、DNとDPを比べる実験を行い、圧倒的にDNに制ガン効果があることを示している。
ではいかにしてネオ抗原特異的DNメモリー細胞をTILから調整するかが次の課題になるが、目標が絞られたことで、大きな一歩になった様に感じる。
2020年12月15日
増殖するガンはDNA複製を繰り返す頻度が高いため、複製時のミスは当然多い。もちろんほとんどはミスマッチ修復システムにより修復されるが、この修復能力が落ちているガンでは、ゲノム変異の確率が上がり、この修復ミスを短い繰り返し配列を持つマイクロサテライトの反復回数の不安定性として検出することができ、ガンのマイクロサテライト不安定性検査として知られている。
ガンが遺伝子の不安定性を持つことは誰でもわかるが、しかし不安定性が高いほどガンが治る確率が高いと聞くと意外に思われるかもしれない。この理由は、ミスマッチが修復されずに残ることで、正常細胞にはない分子が発現することで、新しいガン特異的抗原(ネオ抗原)が生まれ、これがキラー細胞により検出されるからだと考えられるようになった。マイクロサテライト不安定性が見られるガンをチェックポイント治療の適用対象と認めるのも、このガンのネオ抗原に期待するからだ。
今日紹介する米国マウントサイナイ病院からの論文はマイクロサテライト不安定性が見られるガンのネオ抗原の多くは、遺伝子の読み枠のずれ(フレームシフト)により発生することを示す研究で12月10日号Cellに掲載された。タイトルは「Shared Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors(マイクロサテライト不安定性を示す主要に見られる、複数の免疫原性エピトープを持つ共通のフレームシフト変異)」だ。
正直恥ずかしいことに、ミスマッチ修復で発生するネオ抗原の由来は突然変異が挿入された変異のことと私は思ってきた。しかし、マイクロサテライト不安定性の発生を考えてみると、変異が入ってコドンの読み枠が変化し、変異部から最も近いストップコドンまで、正常には存在しないペプチドが合成されることは当然のことだ。しかも、このようなペプチドは自己とは認識されず、キラーによるアタックの標的抗原(エピトープ)になる。さらに、一定の長さがあれば、このようなペプチドからは複数のエピトープが発生できることから、正常ペプチドに変異が入るよりはるかに抗原性が高い。そして、マイクロサテライト検査から想像されるように、フレームシフトによるネオ抗原は、個々のガンを超えて、共有される可能性が高い。
ある程度生物学を習っておれば、フレームシフトでもネオ抗原ができることを気づくだけで、上に述べたことを想像することができるが、この研究ではまさにこれらが実際に起こっていることを、データベースにある、子宮内膜ガン、大腸ガン、胃ガンのゲノムデータを見直すことで明らかにしている。
まず、各ガンでフレームシフトにより発生する新しいペプチド配列をリストし、その中からホストのMHCと反応できる幾つのネオ抗原が発生できるかを推定し、多くのフレームシフトで生まれるペプチドが、ガンの共通抗原として共有されること、さらにその一部はガンの種類を超えて共有されることを明らかにしている。
次に、このようなペプチドが実際に合成され、ミスマッチ修復が低下したガン患者さんでは、マイクロサテライト変異のない患者さんと比べ、その数が多く、強い抗原として働きうることを示している。
また、このようなペプチドを選び出し、正常人、ガン患者さんを問わず、末梢血中のT細胞を刺激できることも示し、ガン抗原として利用できることも示している。
ただ、フレームシフト由来の共通のネオ抗原を持つことと、ガンの予後を比べると、共通のネオ抗原と予後とはほとんど相関がなく、PD-1チェックポイント治療を行っている人で比べると、少し差があると言う程度だ。これは、ミスマッチ修復異常では共通抗原を超える数の多くの変異が発生し、これに対して免疫反応が誘導されると考えられるので、ガン共通のネオ抗原である必要はないことを意味している。
結果は以上で、一見共通のネオ抗原自体は意味がないように思えるが、このネオ抗原をワクチンとして用いることで、少なくともマイクロサテライト不安定性を持つ人共通に、ガン免疫を誘導する可能性は明らかになったと評価している。この研究でリストされたペプチドプールを用いる臨床治験を進めてほしいと期待する。