2018年11月16日
私たちの行動を支配している最も大きな力は、知性ではなく、感情だ。実際、誰でも自己を認識できるのは、頭の中の思想を通してではなく、感情を通してだ。また、感情は過去と現在、更には未来の自己までつないでいる。当然脳科学の最大の問題だが、厄介なことに気分は刻々変化して、それを安定化させるために私たちは常に大きな努力を払わないといけない。PETやMRIが進歩して、感情に関わる辺縁系と呼ばれる脳の各領域についてはよくわかってきた。また長期に多くの神経活動を記録する方法が開発されてからは、動物の感情を支配する回路の研究も大きく進展してきた。ただ、残念ながら脳の奥の方にある領域の活動を、人間でリアルタイムにモニターすることは簡単ではなかった。
今日紹介するカリフォルニア大学サンフランシスコ校からの論文はこの刻々変わる気分に関わる回路を人間で特定しようとした研究で11月29日発行予定のCellに掲載される。タイトルは「An Amygdala-Hippocampus Subnetwork that Encodes Variation in Human Mood(扁桃体と海馬を結ぶネットワークが人間の気分の変化をコードしている)」だ。
実際どうして刻々変わる気分を脳レベルで記録できるのかと思うが、なんのことはない、脳内に電極を設置して長期間記録を続けている。これが可能なのは、てんかん発作が始まる場所を特定してその領域をできるだけ正確に取り除く治療法があり、この目的でてんかんが起こるまで電極を留置して記録が行われる。PETやMRIと異なり、実際の神経活動を長期間正確に測ることができるので、電極を設置した患者さんの許可を得て、さまざまな課題に関わる脳活動を調べるのに使われている。さらに、何故かてんかんが始まる場所は、辺縁系や海馬に多いので、感情の研究にはうってつけで(といってしまうと不謹慎だが)、このグループもこの機会をずっと準備していたと思う。
実際には21人のてんかん患者さんで海馬から辺縁系のさまざまな場所に電極を設置した患者さんを選び、長期間電機活動を記録する。この膨大な記録の中から、同期して一定のリズムで動く領域を選び出し、その活動の変化を長期間取り出して記録できるようにしている。この中で最も目立つのが、扁桃体と海馬がつながった回路で、特に13−30ヘルツの変化を示している。
これまでの研究から、おそらくこの回路を狙っていたと思うが、次に各患者さんの気分を刻々(20分毎)と点数で記録してもらっている。この時、落ち込んだ気分などは評価が難しいので、いい気分かどうかを指標で表してもらう。そして、刻々変わる気分の変化と相関する回路を選び出し、海馬と扁桃体の連結したセットのβ波活動が良い気分と逆相関するでことの特定に成功している。あとは、AIを用いて、この回路の活動から気分を予測できる定番の実験を行い、この結論が正しいことを確認している。そして、この回路の活動ははっきりしている患者さんと、特定できなかった患者さんを比べ、活動がはっきりしている人ほど、不安が強く、抑圧傾向を持っていることも明らかにしている。
人間で示されると、なるほどと納得できる論文だ。そしてこの結果から、このような回路を少しでも減らせれば、うつ症状をおさえられる可能性を示唆しており、今後深部刺激や、外側から磁場や電流を標的に照射するような治療が試みられるような気がする。人間の脳でも電極での記録がいかに大事かよくわかる研究だった。なんと言っても、この研究に参加していただいた患者さんに脱帽だろう。
2018年11月15日
私が学生の頃(1970年ごろ)は、体型から病気になりやすさなどの体質を予測できると考えるのが普通で、教科書も存在した。中でも、少し肥満の人でリンパ節や胸腺が肥大し、免疫反応が低い体質を胸腺リンパ体質と言っていたのを覚えている。その後このような根拠のない体質論議は消えた感があるが、代わりに肥満が一種の慢性炎症として、代謝だけでなく免疫機能にも影響がある事は広く認められるようになっている。肥満自体が新しい胸腺リンパ体質になった感があるが、肥満と免疫の関係の研究は結構盛んなようだ。
今日紹介するカリフォルニア州立大学デービス校からの論文は肥満とPD-1発現による免疫反応の抑制について調べた論文Nature Medicineオンライン版に掲載された。タイトルは「Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade (ガンの進展とPD-1チェックポイント阻害に関わるT細胞機能に対する肥満の逆説的効果)」だ。
確かに、タイトルを見るとなかなか面白そうだと思ってしまう。ただ、読んだ後は少し拍子抜けする論文だ。おそらく著者の頭の中にあったのは、今年の3月the Lancet Oncologyに掲載されたメラノーマの治療成績と肥満との関係について調べたテキサス大学からの論文(McQuade et al The Lancet Oncology 19:310, 2018)だと思う。この論文ではチェックポイント治療成績が肥満の患者さんの方がいいという成績が示されていた。この研究では肥満とがんに対する免疫を動物実験も交えてより包括的に調べようと考えた。
まず、12ヶ月令のマウスの肝臓に存在するT細胞を肥満マウスと正常マウスを比べると、肥満マウスでは細胞の増殖指数が低く、逆にPD-1を発現している細胞が2倍以上に達している。さらに同じことは、ヒトの末梢血でも確認できる。すなわち、肥満になると、T細胞がチェックポイント分子を発現し、増殖を停止し易いことがわかる。
このように免疫機能が肥満により低下するため、マウスに腫瘍を移植すると、肥満マウスでは癌の増殖が倍以上高まっている。肥満マウスではT細胞のかなりの割合がPD-1を発現し、発現遺伝子から見ても正常T細胞とは大きく異なり消耗しやすくなっていることから、ガンが増えやすいのも当然の結果だと言える。
ではなぜ肥満になるとT細胞が消耗しやすくなるのか?肥満で上昇する一種の肥満ホルモンとして知られているレプチンのレベル肥満マウスやヒトで高まっている影響が疑われたので、レプチンに対する受容体の機能が低下したdb/dbマウスのT細胞を調べると、PD-1の上昇は見られない。さらに、T細胞の高原受容体を刺激してレプチンの効果を調べると、期待通りレプチンによりPD-1が倍以上に上昇する。
以上の結果から、肥満により分泌されたレプチンが、T 細胞の消耗を誘導すると考えられる。
そして最後に、この消耗をチェックポイント阻害抗体で食い止められるか、ガンを移植したマウスで調べると、肥満マウスではチェックポイント治療が高い効果を示す。これは、悪性黒色腫に限らず、肺がんでも同じ結果で、特にガンを選ばない。また、人間の直腸癌について調べると、肥満の人の腫瘍に浸潤しているT細胞はPD-1の発現が高く、また他の遺伝子発現でも消耗型のT細胞になっている。一方、チェックポイント治療は肥満の患者さんの方が高い効果を示している。
以上から、肥満によりT細胞は消耗しやすくなっているが、おそらくPD1陽性細胞の割合が大きく上昇しているため、チェックポイント阻害が高い効果を示すのだろうと結論している。ただ、消耗していても、抗PD-1で本当に再活性できているのか、ちょっと信じがたい気持ちも残っている。
2018年11月14日
地球上の生命の発生の話になると、必ずパンスペルミア仮説、すなわち生命の起源となる有機化合物が、地球ではなく、宇宙に散らばる流星に運ばれて地球にやってきたとする考えを述べる人がいる。フランシス・クリックまでがこの説を支持しているとして、不思議と人気がある。ただ、私はこの考えが大嫌いだ。もちろん正しいか、正しくないかをおそらく検証することは難しいだろう。しかしこの説の最大の問題点は、地球以外の何処かで有機化合物ができたとして思考停止に陥る点だ。この説では結局問題は解決せず、では宇宙のどこで、どのようにその有機体が合成されたのかを答える必要があるからだ。結局地に足をつけて、多くの先達と同じ、地球上で有機体が作られる条件を探したほうがずっと生産的だ。2015-2016年にかけ、JT生命誌研究館のウェッブサイトに「無生物から生物が出来る(abiogenesis)ための条件」について、16回にもわたってさまざまな論文を紹介したが(
http://www.brh.co.jp/communication/shinka/2015/post_000022.html
から
http://www.brh.co.jp/communication/shinka/2016/post_000013.html)、これらの進歩を学ぶと、わざわざ宇宙に有機物の起源を求める必要など微塵もないことがわかる。
今日紹介するソルボンヌ大学からの論文も有機物は海底の熱水噴出孔で十分合成可能であることを示す論文でNatureオンライン版に掲載された。タイトルは「Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere (海中の岩石圏のくぼみの中でアミノ酸は生命なしに合成できる)」だ。
最初に断っておくが、生命の関与しない有機物の合成はワクワクする話題だが、かなり有機合成の知識が必要で、私の様な素人にはよく分からないことも多いので、有機化学反応の詳細についてはすっ飛ばして紹介する。
これまでの研究で、有機化合物のabiogenesisには蛇紋岩を多く含む熱水噴出孔が重要と考えられており、この研究もそのような条件を持った海底からさらにボーリングで170m掘り進んだ地層を調べ、鉄を多く含んだサポナイトの中に紫外線を当てた時、自然蛍光を発する有機炭素を検出することに成功する。そして、それがトリプトファンとそれ由来の分解物であることを特定する。
あとは、これが生物由来の有機物でないことを注意深く有機化学的に調べ、実際トリプトファンが存在する場所にはほとんどバクテリアがはまり込む大きさの穴が存在しないこと、また生物が存在するなら発見されてもいい有機物が全く存在していないことなどから、これがabiogenesisによる有機物であることを確認している。
その上で、トリプトファンが発見される粘土鉱物の性状から、この環境が実際の工業的窒素化合物の有機合成で用いられる条件に類似していることを突き止めている。この条件から(ここは理解できていないが)、トリプトファンを合成した化学反応がFriedel-Crafts反応と呼ばれる芳香族酸を合成する反応だろうと推察している。
以上、実際に有機化学的に説明が可能な形で、地球上にアミノ酸が存在すること、またこのabiogenesis過程の名残を受け継ぐバクテリアが蛇紋岩化がおこる環境に存在することから、生命誕生に必要な有機化合物は蛇紋岩化が起こる熱水噴出孔で起ったと考えるのが最も自然だと結論している。
現役の頃はほとんど読むことがなかった生命誕生の条件を探る研究が、少しづつではあるが着実に進展していることを実感する素晴らしい発見だと思う。
2018年11月13日
現在ヨーロッパ、米国での最も重要な政治課題は移民問題だろう。ドイツのお母さんとしてあれほど支持されたメルケルですら、移民受け入れに寛容な政策を嫌われて、次の選挙では首相の座を降りることになった。一方、トランプもイギリスのブレクジットを推進した政治家も、移民制限を主張することで支持を取り付けている。
こんな政治風潮に合わせたかのように、ミネソタ大学からアジアから米国に移民した人たちが、米国の生活に適応していく様を腸内細菌叢の変化から調べた論文が発表された。おそらく時事問題としての面白さも考慮してCellのエディターも掲載を決めたのではないだろうか。タイトルは「US Immigration Westernizes the Human Gut Microbiome (米国への移民は腸内細菌叢を西欧化する)」だ。
米国へ移住したら西欧化するなど、当たり前に思えるが、実際何が腸内細菌レベルでの西欧化に当たるのかを知ることは重要で、確かに興味は惹かれる。
研究では東南アジアの山岳民族モン族とカレン族の女性で、1)現在タイの山岳地帯に住んでいる、2)タイで生まれた後、米国へ移住した、そして3)アメリカで生まれた、と異なる3グループの便を、体重などの健康データとともに集めている。便については24時間前からの全食事についても記載している。全部で500人を超す人についての検査で、実際には大掛かりな研究だが、手法自体は特別なものはない。便の細菌叢も一部の実験を除いて16S rRNAを用いており、全く当たり前の手法だ。
移民という状況を選んだのは、この研究が最初だと思うが、都市文明に侵されないで生きている様々な民族の腸内細菌叢については研究が行われており、粗食にも関わらず、腸内細菌叢は多様で、健康的な細菌からできていることが知られている。したがって、移民という状況でも大体予想がつくが、結果は予想通りと言っていいだろう。
まとめると以下のようになる。
1) 移住によって、土着のカレン、モン族それぞれ特有の細菌種は失われる。またこれまでの研究と同じで、細菌叢の多様性も、土着の生活で最も高く、移住により多様性が失われるとともに、肥満も進む。この多様性の低下は、米国滞在期間が長いほど低下していく。
2) 土着の生活に特徴的な細菌はPrevotella属で、移住とともに西洋型を代表するBacteroidesに置き換わる。
3) 米国に移住することで、植物中心の食事が変化するが、これに応じて炭水化物を分解する酵素がほとんど失われる。中でも、東南アジア特有の食事に関連するglucoside hydrolaseなどはすぐ失われる。すなわち、腸内細菌叢は食生活に密接に結びついている。
4) ただ、食習慣だけで説明ができない文化の差と言えるような差が細菌叢に存在している。
5) このような西欧化は移住後9ヶ月後から始まる。
話はこれだけで、腸内細菌から見た西欧化とはどんなことか、興味を持って読んだが、特に驚くような話は残念ながらなかった。また移民問題に細菌叢から何かアドバイスができるというわけでもなさそうだ。ただはっきりしているのは、アメリカに移住すれば、腸内細菌叢で見たとき、カレン族もモン族も結局トランプと同じアメリカ人になることは確かそうだ。
2018年11月12日
DNAに結合して遺伝子発現を調節する転写因子は、化合物による機能阻害が難しいため、さまざまな病気に関わる分子であることが明らかになっても、薬剤を開発することが難しい。しかし例外も存在し、それが以前胎児の四肢形成異常の原因となることがわかり社会問題になったサリドマイドとその類似物質だ。現在、これらの化合物はリンパ球の発生と維持に必須の分子イカロスやアイオロスにタンパク分解システムをリクルートして、分解させることがメカニズムとして明らかにされ、現在も多発性骨髄腫を始めいくつかの白血病の重要な治療薬になっている。
今日紹介するハーバード大学からの論文はサリドマイド類似物の作用機構をさらに深めて、多くの転写因子を分解できる薬剤の開発を目指した研究で11月2日号のScienceに掲載された。タイトルは「Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN (サリドマイド類似物がセレブロンを介して標的にする人間のC2H2チンクフィンガー分解分子構造の解析)」だ。
サリドマイド類似物はセレブロンという分子と結合して、イカロスなどのチンクフィンガータンパク質(ZFN)に結合する。以前紹介したように、この時、サリドマイド類似物に他のタンパク質と結合する化合物を結合させて分解してしまおうという戦略の薬剤開発が行われているが(
http://aasj.jp/news/watch/3472)、この研究ではサリドマイド類似物とセレブロンの結合体がイカロスなどの一部のZFNに結合する仕組みを詳しく解析することで、標的にできるZFNのレパートリーを増やすという方向で研究を行なっている。
まずサリドマイド、レナリドマイド、ポマリドマイドの3種類のサリドマイド類似物により分解されるZFN分子をスクリーニングし、11種類のZFを特定し、最終的にその中の6種類の異なるZFNがいずれの化合物によっても完全に分解されることを確認している。
次に、特定された分子の共通の構造、および3次元構造解析を行い、標的になるZFは予想以上に多様なセレブロンーサリドマイド類似物結合部位を持っていることがわかる。そこで、この多様な結合部位を分子間でシャッフルして調べ、この結合部位の特定のアミノ酸の組み合わせがあるときだけ分解システムをリクルートできることが分かった。
そこで、こうして特定したセレブロンーサリドマイド類似体と結合できるアミノ酸の組み合わせを持つZFNがさらに50−150種類データベースの検索から見つかる。その中からいくつかのZFNをピックアップして生化学的に調べると、約8割の確率で予測されていることも明らかになった。すなわち、まだまだ多くのZFNを標的にすることが出来る。
さらに、合成した新しいサリドマイド類似物を用いてこうしたリストされてきたZFNの分解を調べると、標的になるZFNのレパートリーが変わることもわかり、それぞれのZFNごとの薬剤の開発も可能であることを示している。
以上の結果から、セレブロンとサリドマイド類似物という枠を守るだけでも、様々なZFNを標的にできることが明らかになり、現在行われている治療の副作用のメカニズム、およびイカロスなどとは異なるZFNを標的にした薬剤の開発が進む可能性がある。期待したい。
2018年11月11日
私のようにアルコールを欠かさず結構メタボという人間はともかく、アルコールを嗜まないのに脂肪肝(NAFL)になり、それがNASHと呼ばれる慢性肝炎そして肝硬変に移行したり、あるいは肝がんへと発展する厄介な病気がある。研究者も多く、かなりそのメカニズムは明らかになっている。これまでの理解をまとめると、肥満に伴う肝臓細胞の代謝の高まりが脂肪の酸化、ERストレス、炎症、そして活性酸素の生産を高め、肝臓を障害し始める。もちろん、自然免疫の高まりに対応して免疫細胞の浸潤が進み始めると正真正銘のNASHになる。そして、肝臓細胞のロスを埋めようと再生が繰り返す中で、肝がんが発生する。すなわち、肝がんはNAFLからNASHに連続した病気と考えるのが普通だった。
ところが今日紹介するオーストラリア・モナーシュ大学からの論文はNASHと肝がんは共にNAFLに起因しているが、異なるメカニズムで発生することを示した論文で11月29日発行予定のCellに掲載されている。タイトルは「Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC (肥満はSTAT-1依存的にNASHへと発展し、STAT-3依存的に肝ガンを発生させる)」だ。
基本的にこの研究は、マウスの疾患モデルで、遺伝子ノックアウトを組み合わせてNASHや肝ガンへと発展する際の分子機構を明らかにするという戦略で行われている。
この研究ではまず、脂肪肝になると肝臓内の脱リン酸化酵素(PTP)が酸化により不活性化されること、そしてその中のPTP1BとTCPTPは人間の脂肪肝でも上昇していることから、これが脂肪代謝から肝臓病へと発展する引き金だと特定する。これらの脱リン酸化酵素はサイトカインの下流シグナルとして有名なJAK/STAT経路を抑制することが知られているので、肝臓でのSTATの活性を調べると、NASHではPTPが酸化により抑えられる結果、STAT-1とSTAT-3が上昇していることを明らかにする。すなわち、酸化ストレス、PTP酸化、PTP抑制、そしてSTAT活性化のシグナル経路が浮き上がってきた。あとは、これら一つ一つの疾患との関係を調べていけばいいことになる。
まずTCPTPを肝臓細胞でノックアウトできるようにしたマウスで、高脂肪食を食べさせながらTCPTPをノックアウトすると、リンパ球の浸潤も伴うヒトのNASHとほとんど同じ肝病変ができる。さらに、肝ガンも同じ様に誘導される。従って、TCPTP機能抑制と高脂肪食が合わさると、NASHや肝ガンの引き金が入ることが確認された。一方、脂肪食だけではNASHや肝ガンまでは発展しないので、人間の場合何らかのきっかけでTCPTPの活性が低下することが引き金になる。
ここまではこれまでのシナリオを支持するように思えるが、この後STAT-1およびSTAT-3を別々にノックアウトする実験系で、STAT-1をノックアウトするとNASHが、STAT-3をノックアウトすると肝ガンの発生を別々に予防出来ることを示し、これまでの通説だった、肝ガンの発生にはNASHとリンパ球の浸潤を伴う慢性炎症が必要であるというシナリオを完全に覆した。すなわち、TCPTPという入口が同じなため、一体化して見えていたNASHと肝ガンも別のプロセスとして考えたほうがいいという結論だ。
特に新しいテクノロジーを使っているわけでもなく、古典的な研究だが、当たり前として疑われなかったシナリオを書き直した面白い研究だと思う。脱リン酸化酵素の活性を上げるか、STATの活性を下げる工夫をすることで、治療可能性に繋がって欲しい。
2018年11月10日
自閉症スペクトラム(ASD)の主症状は、社会性の障害、言語障害、そして反復行動とされている。もちろんこれに異を唱えるわけではないが、言語障害については、発話や会話の障害と、表現能力とに分けて考える必要 がある。 というのも、 読まれたことがある人も多いと思うが、 東田直樹さんの有名な著作「自閉症の僕が飛び跳ねる理由」や、彼が22歳で発表した「飛び跳ねる理由」などを読むと、その表現力の豊かさに驚き、言語能力障害と診断するのが憚られる。これは東田さんだけの話ではない。米国の自閉症児Ido君の文章が集められている本「Ido in autismland」を読むと、英語を話さない私でも、素晴らしい表現力と想像力だと思う。特にこの本では、絵本を指差して読んでいる時、急にIdo君とのコミュニケーションを持つことができた感動的シーンや、Ido君が支援者へのスピーチで拍手喝采を得る感動的シーンが書かれているが、東田さんやIdo君が書いているように、表現しようにもコミュニケーションを阻害する抑制が強く働いているだけではないだろうか。だとすると、なんとかこの抑制を取り除く方法を開発する必要がある。
このための一つの方法として長く試みられているのが音楽を通じてコミュニケーションをたかめる治療法で、さまざまなプログラムが開発され、米国やヨーロッパでは数千人規模の音楽療法の専門家まで養成されている。ただその効果の評価をめぐっては、様々な研究結果が入り混じっているというのが現状で、例えば昨年8月にここで紹介した米国医師会雑誌に掲載された臨床試験研究では(http://aasj.jp/news/watch/7216)効果が認められないという結果に終わっている。
今日紹介するモントリオール大学からの論文も、111人のASD児を無作為化して音楽療法と、一般のASD治療プログラムに割り振ってその効果を確かめた研究でTranslational Psychiatryに掲載された。タイトルは「Music improves social communication and auditory–motor connectivity in children with autism (音楽はASD児の社会コミュニケーション能力を高め、聴覚野ー運動野の結合性を高める」だ。
この研究で用いられている音楽プログラムは他のプログラムと比べて大きく異なる点はない。ただ、全ての治療過程をビデオに収め、適切に行われたかどうかを調べている点とMRIによる脳イメージング検査を行って、より客観的評価を試みた点が新しいといえる。
だいたい10回の治療プログラムを受けた後でコミュニケーション、社会性、ボキャブラリー、家族内での生活の質、異常行動などを評価するとともに、MRIを用いて脳の機能的結合性をしらべている。
この研究の結果はポジティブで、コミュニケーションと家族内での生活の質は,、音楽治療によって改善している。さらに、これに対応して聴覚野と運動野の神経結合性が高まっており、脳自体の構造も変化したという結論だ。
すでに述べたように、同じような治験が行われ、さらに優れたプロトコル開発につなげていく必要があるが、MRIで調べられる脳の機能が、しかも学童期にあきらかに改善したという結果は今後の研究にとって重要だと思う。ASD児には音楽的才能のある子供が多い。このルートを利用するのは納得できる方法で、さらに多くのトライアンドエラーが科学的に重ねられる必要があると思う。これは私の個人的感触で、なんの根拠もないが、様々な論文を読んでいると、一歩づつASDの子供達のコミュニケーションを取り戻す方法が開発できているように感じる。
2018年11月9日
面白い現象を見つけてそれを誰もが納得できる仕方で説明するのは、研究の醍醐味だろう。ただ、多くの場合論文の読者が最後まで納得できるエビデンスを示すのは簡単ではなく、中途半端に終わることも多い。
著者には申し訳ないが今日紹介するフランスのGustave Roussyガンセンターとイスラエル テルアビブ大学からの論文は、私にとっては肝心の最後がよくわからないという典型の論文になってしまった。タイトルは「UV protection timer controls linkage between stress and pigmentation skin protection systems (紫外線から皮膚を守るタイマーが皮膚の防御システムのストレスと色素沈着の連携をコントロールする)」だ。
この研究が対象とした現象は全く初耳だったし、面白い。マウスでも人間でも、紫外線照射を毎日1回、2日に一回、3日に一回、の頻度で照射し60日目に組織を調べると、なんと毎日照射した時より、2日に一回照射した方が色素沈着が強くなるという現象だ。そして、これは培養したメラノーマ細胞レベルでも再現できる。
こんなことがあるなど想像だにしなかったし、とても面白い現象だ。この謎を解くというのがこの論文の目的だ。細胞レベルの性質として特定できたので、謎は解けるかと最初は期待した。要するに、色素細胞の活性を調節する様々な分子の発現を異なる照射条件で比べれば解けるはずだ。
この研究では、1日一回と、2日に一回で、色素細胞の発生と活性を調節しているマスター分子MITFの発現のパターンが異なることを示している。
1) まず、UV照射(試験管内ではcAMPによる刺激で代えている)後、MITFの発現は外界の刺激とは全く無関係で周期的に変化する。
2) ただ、上がり下がりを繰り返しながらも発現はだいたい48時間で元のレベルに戻る。しかし、24時間目にもう一度照射すると、新しい周期が始まる。
3) MITFは短い間隔の周期で振動する他、その下流の遺伝子は、この細かい周期にはあまり影響されない分子が多い。
4) MITFの周期は、それを制御するHIF1やMir-148の周期的発現の結果としてほぼモデル化できる。
5) また、この2種類の分子をノックアウトすることで、MITFの周期を変化させ、その結果24時間、48時間照射による色素沈着の差も消失する。
などが結果だ。要するに、UV照射後のMITFは、短い周期と長い周期で変化し、長い周期で見ると48時間で元のレベルに戻るが、24時間目にもう一度照射すると、長い周期が24時間に変わる。一方、短い周期はそのまま維持されると考えていいだろう。
一見うまく説明できたように見えるが、ではなぜ48時間という長い周期の方が、色素の沈着が高まるのかについては、結局説明できていない。色素合成の阻害分子も含め、やはりもう少し精度の高い研究が必要だろうと思う。また、せっかく発見した、MITFの短い周期の振動の意味も明らかにされていない。そして、色素沈着は60日目で見ているのなら、MITFの発現変化も、60日間調べて欲しい気がした。その意味で、現象は面白いのに、フラストレーションの残る仕事だったと言わざるを得ない。
とはいえ、日焼けサロンのプロトコルは、48時間サイクルに変えた方が良いことは間違いない。
2018年11月8日
オプジーボもそうだが、今や苦労して標的に結合する化合物を探すより、標的に対するモノクローナル抗体を作ったほうが、薬になるという風潮が蔓延しているように思う。抗体薬が細胞表面の分子に対してしか効果がないということがわかっていても、現在も多くの抗体薬がFDAの認可を受けようと臨床治験が行われている。抗体の持つ標的に対する特異性を考えると、開発の確率から考えても、細胞表面分子なら抗体薬というのはうなづけるが、しかし限られた医療費で今後効果が示された抗体薬を本当に万人平等に使うことができるのかいつも心配になる。
とりわけ今日紹介するロンドン大学からの論文はなんと偏頭痛まで抗体薬を用いて治そうとした治験論文でThe Lancetオンライン版に掲載された。タイトルは「Efficacy and tolerability of erenumab in patients with episodic migraine in whom two-to-four previous preventive treatments were unsuccessful: a randomised, double-blind, placebo-controlled, phase 3b study (これまで2−4種類の方法でも治療できなかった反復性の偏頭痛に対するerenumab効果と安全性)」だ。
私自身はほとんど頭痛で困ったという経験はなく、ましてや偏頭痛が反復することなど全く経験したことがない。しかし、この論文を読むと、かなり多くの人が片頭痛で苦しんでおり、偏頭痛は労働を阻害する2番目の要因になっているようだ。それにもかかわらず、現在行われている片頭痛の治療は対症療法だけで、それも効かないケースが当たり前という有様なようだ。これまでの研究で、偏頭痛の原因の一つとして、37個のアミノ酸からなるポリペプチドCGRPの関与が示されていた。
この論文はこのCGRPに対するモノクローナル抗体を用いてこれまで薬剤が全く効果を示さなかった片頭痛を治そうとした治験研究で、2−4種類の治療を試したが全く効果が見られなかった人を集め無作為化して、抗体(erenumab)か偽薬を月に1回、3ヶ月間注射し、偏頭痛の頻度が50%以上低下した患者さんの割合を調べている。驚くのは、12週間でも14%近くの偽薬を用いたグループで効果がある点だ。偏頭痛の難しさがよくわかる。ただ、偽薬とくらべた時、erenumab投与群では30%の患者さんが偏頭痛の頻度が50%以上改善している。一方、この治療による副作用は、3ヶ月という範囲ではほとんど何もない。
この抗体薬を用いても7割の人の偏頭痛は改善しないのだが、それでも3割の人の偏頭痛はたしかに解消して、生活の質も上がったとすると、治験としては効果があったという結論になるだろう。しかし薬価がいくらになるのか分からないが、偏頭痛にまで抗体薬が進出しているのを見ると、ちょっと複雑な気持ちになってしまうのは、偏頭痛持ちの人の気持ちがわからない私だけだろうか。
2018年11月7日
RNAのアデニンをメチル化する酵素Mettleが明らかになり、この分子をノックアウトする研究から、RNAメチル化が発生を始めさまざまな過程において重要な働きをしていることが続々明らかにされ、mRNAレベルでの微調整がいかに重要かがわかってきた。実際、私のブログでもRNAメチル化については6回も紹介している。
それでも新しい話が尽きることがないようで、今日は私たちの記憶にRNAメチル化がどのように関わるかを明らかにしたシカゴ大学からの論文を紹介する。タイトルは「m 6 A facilitates hippocampus-dependent learning and memory through YTHDF1(アデニンのメチル化はYTHDF1分子を介して海馬での学習と記憶を促進する)」だ。
メチル化RNAはさまざまな細胞過程に関わるが、最近の研究でYTHDF1分子と結合して、翻訳の促進に関わることが知られている。この研究の目的は、この翻訳促進機構が脳内でも働いていることを示すことで、そのためにYRHDF1遺伝子のノックアウトマウスを作成し、その脳機能を調べるところから研究を始めている。ある意味では、ノックアウトマウスの解析という至極古典的な研究だ。
もちろん、YTHDF1の発現は脳内、特に海馬の神経で高い発現が見られるが、ノックアウトマウスは正常に発生し、海馬の解剖学的構造も特に変化はない。しかし、文脈依存性記憶が強く障害されている。一方扁桃体が関わる音の刺激による恐怖記憶は犯されていない。これらの結果から、海馬が関わる学習と記憶はYTHDF1ノックアウトマウスでは選択的に障害されていることが明らかになった。
次にこの変化の生理学的背景を調べ、神経結合部のスパインが減少することによる長期記憶が低下していることがわかった。そして、これらの異常が全てYTHDF1欠損によることを、同じ遺伝子を海馬に導入する回復実験を行い、証明している。
そして最後に、これらの生理学的変化を、メチル化RNAおよびYTHDF1の機能と関連づけるため、まずYTHDF1に結合するメチル化RNAにはシナプスや記憶に関わる分子が濃縮しており、これらの分子は正常では神経刺激とともに合成が高まるが、YTHDF1ノックアウトマウスではこのような上昇は見られない。また、レポーターを用いた実験で、神経刺激後比較的遅い2−4時間でこのような上昇が見られることが明らかになった。以上のことから、メチル化されたRNAはYTHDF1と結合することでおそらく安定化し、この結果同じmRNAから合成されるタンパク質が増加することを示している。
以上、タンパク質の合成の本当のファインチューニングにもメチル化RNAが関わるという話だが、脳を維持するにはこれほど繊細なコントロールが必要かと思うと、脳を守ることの難しさが実感される。