9月2日 進む新型コロナウイルススパイクの構造解析(9月3日号 Cell 掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

9月2日 進む新型コロナウイルススパイクの構造解析(9月3日号 Cell 掲載論文)

2020年9月2日
SNSシェア

「With コロナ」という言葉は、今後私たちが新型コロナウイルス感染の恐怖と共に生きなければならないという消極的な意味に聞こえる。しかし、ウイルスを地上から撲滅できなくても、新型コロナウイルス治療法開発により恐怖は解消することは間違い無く、既存薬も含めて治癒率の高い治療法が年内には提供されるようになると私は楽観視している。この確信の根拠については、ウイルスがコードする各タンパク質を標的とする薬剤の開発状況を調べた「希望」のチャートを作成しつつあり、完成すれば皆さんにも提供したい。

しかしこの中で最も希望が持てるのが、ウイルスが細胞へ侵入するときに必須の分子スパイクタンパク質に対するモノクローナル抗体治療だと思う。例えば米国の治験登録サイトClinicalTrials.govでcovid-19 and monoclonal antibodyをキーワードに検索すると、なんと47の治験がリストされている。そのうち既に第3相に入った治験も17存在することを知ると、多くのモノクローナル抗体薬が既に開発が終わり、嬉しいことに熾烈な開発競争が進んでいることがわかる。これほど多くのモノクローナル抗体を開発できる理由の一つが、感染した患者さんのB 細胞から直接抗体遺伝子を分離できるため、最初から人型の抗体が使える点だろう。少なくとも利用可能なmAb薬は年内に出てくると勝手に予想している。

一方で抗体の標的となるウイルス側分子スパイクについての研究も驚くべきスピードで進んでいる。スパイクの研究は、抗体の臨床結果を解釈する意味で欠かせない。この研究分野で気になるのが、スパイクが結合する分子のレパートリーが増えてきている点で、ACE2のみならず、ニューロピリン、CD209、そしてなんとMERSウイルスが侵入に使うDPP4まで、新型コロナのスパイクと結合できることを示す論文が発表されている。今後これらのスパイク結合分子の役割について理解を深めることは重要だ

このような現象をしっかり理解するためには、スパイクタンパク質の構造と生化学をしっかり理解することが必要で、今日紹介する2編の論文は、この問題が徹底的に解析されていることを知る意味で格好の論文だと思う。

最初の英国MRCからの論文はクライオ電顕を用いてウイルス上に発現されているスパイクタンパク質の構造を解析した研究で8月17日にNatureにオンライン出版された。

もちろん、精製したスパイクタンパク質の構造解析に関しては多くの論文が存在し、治療抗体の開発に必須の情報を提供している。しかし、このグループはさらに進んで、実際のウイルス粒子上のスパイクの構造を解析している。結果は、これまでの構造解析結果を大きく変えるというものではないが、一つのウイルス粒子の中に、細胞側と融合する前のスパイクと、融合後のスパイクが同時に存在している図や、異なる立体構造を示すスパイクタンパク質が共存しているのを見ると、本当に驚く。

この論文を読んで感じるのは、新型コロナに関しては、これで十分と思うのでは無く、やり残しのないよう、徹底的に研究し尽くすという研究者の意気込みだ。この意気込みを見ると、希望がふくらむ。

それを示すもう一つの例が米国Fred Hutchinsonがんセンターから9月3日号のCellに発表された論文だ。

これまでウイルスの変異により、抗体が効かなくなったり、ウイルスの感染力が高まったりすることが指摘されているが、基本的にはウイルスゲノムの変異から適当に推察しているに過ぎないことが多い。

この研究ではスパイクタンパク質を構成する全てのアミノ酸を、それぞれ16種類の別のアミノ酸に置き換えた膨大な遺伝子ライブラリーを作成し、全てを酵母細胞表面に発現させて、1)安定的なタンパク質として発現できるか、2)ACE2との結合性、の2種類の指標で評価している。すなわち、可能な全てのスパイク分子の変異とその形質についての、網羅的チャートと材料が整った。

当然多くの変異は機能的タンパク質の合成を阻害するため、酵母表面に発現できなくなる。とはいえ、ほかのタンパク質と比べるとスパイクタンパク質の多くのアミノ酸残基は変異によっても影響されにくく、逆にいうと多くの変異が許容されることがわかる。この多くの変異が許容できる可塑性が、コロナウイルスの細胞侵入に様々な分子が使われる理由になっているのだろう。このライブラリーを使うと、ほかの動物への感染性も網羅的にテストすることが可能で、ウイルス進化を知るためにも重要なリソースになる。

また、現在流行中のウイルスゲノムをこのチャートに照らして、感染性を推察することができる。今回人為的に作成した変異の中には、安定に表面に発現できるようになる変異、あるいはACE2とより高い親和性を持つ変異などが見つかっており、まだまだ高い感染性をもつウイルスが出現する可能性を示唆しているが、幸い同じような変異はまだ流行中のウイルスには存在していないことも確認できる。これまで、ゲノムと流行度に基づいて、適当に行われてきた感染性の評価も、このチャートのおかげで正確な予測ができるようになるだろう。

この研究では調べられていないが、このライブラリーはニューロピリンなどほかの分子との結合の評価にも使えることから、ゲノムと病気の進展の関係についての研究が一段と進むと期待できる。

他にも多くの可能性を秘めた研究だが、私が強調したいのは、このレベルまで新型コロナウイルスについては研究が進んでいる点だ。このような進展を逐一伝え、新型コロナウイルスも近いうちに克服できることを示していくのも、メディアの重要な役割だと思う。その意味でこのブログは、楽天主義を貫くことにしている。

カテゴリ:論文ウォッチ

9月1日 Fragile X治療の可能性(9月3日号 Cell 掲載論文)

2020年9月1日
SNSシェア

Fragile X はRNA結合タンパク質で翻訳の抑制に関わることが知られているfmrp遺伝子に存在するCGGリピートにより遺伝子がメチル化され発現が抑制されることで起こることがわかっている。Jaenishらはクリスパー技術を用いて脱メチル化することで治療可能であることを示し、根治のための遺伝子編集技術に期待が集まっている(https://aasj.jp/news/watch/8091)。

ただ実現にはまだまだ克服しなければならない壁が多く、fmrp欠損による形質を解析して治療可能な標的を見つけることも重要だ。今日紹介するイェール大学からの論文はfmrpが欠損した神経細胞に見られるミトコンドリア異常を特定し、Fragile Xの新しい治療法を示唆する重要な研究で9月3日号のCellに掲載された。タイトルは「ATP Synthase c-Subunit Leak Causes Aberrant Cellular Metabolism in Fragile X Syndrome(Fragile X症候群ではATP 合成酵素のCサブユニットのリークにより細胞の代謝異常が起こっている)」だ。

この研究で着目したのはFragile Xやfmrpノックアウトマウスで神経細胞のミトコンドリアが小さく形態異常を示すという点で、fmrpによる翻訳異常の結果、ミトコンドリア機能が障害されているのではと研究を進めている。

私も初めて聞くようなミトコンドリアの機能テストを行った結果、ミトコンドリアでATP合成に関わる分子複合体のCユニットの合成が高まり、他のタンパク質とリンクしないチャンネルを形成してプロトンを逃してしまっていることがわかった。データは示されていないが、fmrp による翻訳抑制が働かなくなって、Cユニットの合成が高まってしまったと考えられる。

このミトコンドリアでのプロトンの漏れと、ATP合成の低下は、細胞全体の代謝の再プログラム化を促し、例えば糖代謝に関わる様々な酵素の合成が上昇している。重要なことは、dexpramipexoleによりこの漏れを修復するとこれらの代謝異常が回復する点で、代謝異常が翻訳の異常ではなく、ミトコンドリア機能異常に起因していることがわかる。さらに、Cユニットの発現をノックダウンで低下させると、期待通り様々な酵素の合成が低下し、代謝も元に戻ることを確認している。

最後にイオンチャンネルの漏れを抑えるより強い化合物CsAを用いて、fmrp欠損神経細胞だけでタンパク合成の上昇が抑えられ、ミトコンドリアの形態が正常化することを確認している。

最後にFragile Xモデルマウスを用いて、dexpramipexole投与によりシナプスの形態が正常化し、毛づくろい、巣作り、運動性などに見られた行動異常が正常化することを示している。

実際には、ミトコンドリアの専門家による極めて精緻なプロの研究で、詳細を省いてエッセンスだけを紹介したが、fmrp欠損による翻訳等の異常により最も強く障害された過程を特定し、その過程を正常化することができる、現在他の病気に使われている薬剤を特定した研究とまとめることができる。

これまでFragile Xの研究は何度も紹介してきたが、様々な分野のプロフェッショナルを巻き込んで研究が進んだ結果、治療への糸口がはっきりしてきたように感じる。期待したい。

カテゴリ:論文ウォッチ

8月31日 2本目のX染色体がアルツハイマー病を抑える(8月26日号 Science Translational Medicine 掲載論文)

2020年8月31日
SNSシェア

哺乳動物の性染色体は女性XX男性XYだが、性とは関係ない機能を担う遺伝子も存在するX染色体からの遺伝子発現量を男女で合わせるために、女性のそれぞれの細胞でどちらかのX染色体を不活化して、男女とも一本のX染色体だけから遺伝子が発現するよう巧妙に調節されている。とは言え例外も存在し、X染色体上にあっても不活化を受けない遺伝子も存在する。

今日紹介するカリフォルニア大学サンフランシスコ校からの論文はX染色体に存在するのに不活化を受けない遺伝子KDM6Aがアルツハイマー病の進行を遅らせることを示した論文で8月26日号のScience Translational Medicineに掲載された。タイトルは「A second X chromosome contributes to resilience in a mouse model of Alzheimer’s disease (2番目のX染色体がマウスのアルツハイマー病モデルの抵抗力に寄与している)」だ。

一般的に女性のほうがアルツハイマー病(AD)の患者さんが多いことが知られている。しかし、一旦ADにかかると男性の方が早く死亡するし、進行も早い。この研究の目的はこの理由を明らかにすることだ。

まずADにかかると男性の方が本当に早死にするのか調べる目的で、多くの論文検索を行い、男性の方の死亡リスクが1. 63倍に増加していることを確認している。そして、アミロイドタンパク質を過剰発現させたマウスモデルでもオスの方が早期に死ぬこと、そして症状の進行が早いことを確認し、以後マウスでこの原因を確かめようと研究を進めている。

この差が性ホルモンでないことを去勢したマウスで確認し、また遺伝子操作で染色体と形質が一致しないマウスを比べた実験からY染色体がこの差の原因でないことを確かめた後、X染色体の数が原因ではないかと着想し、XXYやXOなどの個体を調べ、X染色体が2本ある場合は全てADの進行が遅れることを発見している。

こうなると当然X染色体不活化を受けない遺伝子がAD進行抑制に関わると考えられるが、この研究では遺伝子抑制を抑えるメチル化ヒストンを脱メチル化酵素Kdm6aが最も可能性が高いと狙いを絞って、研究を進めている。

期待通り、Kdm6aはメスでADの主座といえる海馬で発現が高く、またオスの海馬にKdm6a遺伝子を直接導入して過剰発現させると、空間記憶能力の低下を抑制することが明らかになった。

これと同じことが人間で起こっているかどうか確かめるのは難しいが、Kdm6aの遺伝子発現が高いSNPを持つ個体について調べると、認知症の進行が抑えられる傾向にあることがわかり、ヒトでもKdm6aの脳内での発現量がAD進行に重要であることを明らかにしている。

以上、性差というと単純にホルモンのせいにできない場合もあること、また新しい治療のためのヒントが見つかったように思う。

カテゴリ:論文ウォッチ

8月30日 自由行動の研究を可能にする光遺伝学(8月19日発行 Neuron 掲載論文)

2020年8月30日
SNSシェア

光遺伝学により、特定の場所の神経集団の記録や刺激が可能になって、動物を生かしたまま様々な行動の神経回路を調べることが可能になった。それでも、通常の光遺伝学ではマウスは光ファイバーで繋がれており、どうしても自由が制限される。この点を改善しようと様々な方法が開発されており、以前鉄と結合するフェリチンと、トルクを感じて開くTRPV4を結合させ、磁石で鉄が引っ張られると興奮するというエレガントなシステムを用いて、ドーパミンによる褒賞回路の刺激を磁石によりOn/Offする系を紹介したことがある(https://aasj.jp/news/watch/4961)。 ただ、すでに4年以上経つがそれほどポピュラーになっていないのは、この系を必要とする研究が少ないことと、トルクを発生させるのに強い磁場が必要で、ケージの中で自由に行動している場合、スウィッチコントロールが難しいからだろう。

今日紹介するイスラエルワイズマン研究所からの論文は神経刺激にはこれまで通り光を使うが、ファイバーにつながった光源と磁気に反応するリードスイッチを用いて、自由に行動しているマウスでの脳内に、必要な時に光を点滅させる方法を使って、オキシトシン分泌神経を刺激した研究で8月19日号のNeuronに掲載された。タイトルは「Wireless Optogenetic Stimulation of Oxytocin Neurons in a Semi-natural Setup Dynamically Elevates Both Pro-social and Agonistic Behaviors(半自然的実験環境で行動するマウスのオキシトシン神経をワイヤレス光遺伝学刺激使って刺激することで社会的と同時に敵対行動も高める)」だ。

この研究が面白いのは、磁石でコントロールできる光遺伝学システムを全て手作りで構築している点だ。言われてみれば、光ファイバーからLEDライト、リードスイッチなどは例えば秋葉原に行けば皆揃うだろう。これを見ると、光遺伝学も随分成熟し大衆化した技術になったと感慨が深い。

この研究で光遺伝学的に刺激対象にしたのが視床下部の室傍核にあるオキシトシン分泌神経で、比較的自由に動ける環境でオキシトシンの分泌を誘導することで、内因性のオキシトシンの行動への影響を見ている。

また行動時にオキシトシン神経に入力される自然の刺激への反応を見るために、光遺伝学で神経興奮を完全にコントロールするのではなく、自然の反応への閾値を下げるためのStep-Function Opsinを用いて行動実験を行なっている。

オキシトシンは他の個体に対する社会性を高めるということで自閉症の治療にも使われているという点で、行動操作研究の格好の対象といえ、この選択はよく理解できる。ただ、最近の研究でオキシトシンは必ずしも社会性を高めるだけでなく、状況によっては反社会的な行動も高めることが知られるようになった。

そこで新しい技術を使って、自由に行動するマウスのオキシトシン閾値が下がったらどうなるかを調べている。

詳細は省略して結果をまとめると、

  • 大きなケージ内で縄張り意識を獲得させた後、他のマウスと出会った時の攻撃性を調べる実験を行うと、オキシトシン神経の興奮を高めると攻撃性は強く減少し、この変化はオキシトシン受容体の阻害で元に戻る。
  • 一方、餌場や水場を他のマウスと共有する半自然的環境で同じ実験を行うと、向かい合ってコンタクトをとる社会的行動も、逆にお尻を追いかける反社会的行動もオキシトシンにより増強することが明らかになった。

以上の結果は、オキシトシンを社会性ホルモンと決めつけるのは問題で、おそらく様々な社会行動を際立たせる効果を持つと考えた方が良いことを示唆している。もちろん、尻を追いかけ回すことも、ある意味では社会性が高まると言えなくはないので、自閉症をオキシトシンで治療するアイデアは今も間違っていないと思うし、今回示された友好的、敵対的を問わず社会との関係が高まるなら、より期待が持てるように思うが、将来は深部脳刺激と同じように、オキシトシンの閾値を下げる治療もあるかもしれないと思う。

カテゴリ:論文ウォッチ

8月29日 メタボ改善のための新しい秘策(8月26日号 Science Translational Medicine 掲載論文

2020年8月29日
SNSシェア

これまでの研究で褐色脂肪組織の熱生成を高めることで、代謝を改善し、肥満を防げることがわかっている。この熱生成を調節する核になっているのがアンカプラー分子と呼ばれるミトコンドリアのプロトン勾配を、ATP合成に使わずに、熱として発散するのを可能にする分子で、熱生成に最も関わるUCP1は褐色脂肪細胞にしか発現しない。ただ、長期間寒さにさらされるような状況では白色脂肪組織にもUCP1が発現した褐色脂肪細胞の性質が現れ、ベージュ脂肪組織と呼ばれている。

今日紹介するジョスリン糖尿病センターからの論文は、白色脂肪細胞でUCP1を強く誘導しベージュ化した後、それを移植することで全身の代謝を改善できないか調べた研究で、8月26日号のScience Translational Medicineに掲載された。タイトルは「CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice (CRISPRによる遺伝子操作を行なった褐色様脂肪細胞は、マウスの食事による肥満を抑えメタボリックシンドロームを改善させる)」だ。

この研究ではヒト白色脂肪組織から樹立した細胞株のUCP1遺伝子をプロモーターにCas9で導かれた転写活性化分子で誘導できるよう遺伝子操作を行い、正常と比べてタンパク質レベルで20倍のUCP1が発現する細胞株を樹立している。この細胞をHUMBLEと名付けているが、HUMBLEは正常の褐色脂肪組織と同じような性質を持ち、しかも外部からの刺激なしにUCP1分子を強く発現している。また、ATPの代わりに熱が作られる状況に反応して、ミトコンドリアの増殖や機能が高まっている細胞にリプログラムされている。

この細胞をヌードマウス胸骨付近に移植すると、脂肪組織を形成し長期間維持できることがわかった。そしてなによりも移植されたマウス個体ではインシュリン分泌は変化がないものの、糖代謝が改善され、血中脂肪が低下、熱の生成が高まることが明らかになった。また、高脂肪食による肥満も強く抑えることができる。

個体での全ての効果を移植した細胞だけで説明できないので、ホスト側の脂肪がリプログラムされた可能性を調べ、移植した細胞から分泌される代謝物が体内の褐色脂肪組織を活性化させ、代謝改善に寄与することを示している。

最後にこの分泌因子について追求し、アルギニン代謝経路から合成されるNOが、赤血球により全身に運ばれ、局所褐色脂肪酸を活性化して代謝改善の方向に動員されることを示している。

もちろん同じ効果は厳しいトレーニングと食事制限により可能だと思うが、操作された自分の脂肪細胞を移植するだけでこれほどの効果が得られるなら、実際の臨床に用いられる日も近いような気がする。

カテゴリ:論文ウォッチ

8月28日 好塩基球は神経系と免疫系をつないで寄生虫に対する反応を制御している(Nature Immunology オンライン掲載論文)

2020年8月28日
SNSシェア

好塩基球は人間の末梢血中で最も少ない白血球だが、以前はマウスには組織に常在するマスト細胞以外存在しないと言われていた。その後の研究で、マスト細胞をそのままに、好塩基球を除去する方法が東京医科歯科大の烏山さんたちにより示され、2型炎症と呼ばれるアレルギー反応を調節して、寄生虫への反応調節に重要な働きをしていることが示唆された。

今日紹介するニュージャージー州立大学からの論文は好塩基球が2型炎症に関与する際の分子メカニズムを追求した研究でNature Immunology にオンライン掲載された。タイトルは「Basophils prime group 2 innate lymphoid cells for neuropeptide-mediated inhibition (好塩基球は神経ペプチドを介するグループ2自然リンパ球に対する阻害効果を誘導する)」だ。

この研究で使われたモデルはマウスで最もよく利用される寄生虫鉤虫感染モデルで、皮下に注射した500匹の鉤虫が体内で広がる時、肺組織で見られる2型アレルギー反応を指標にしている。

遺伝子操作で好塩基球が欠損したマウスを作成すると、鉤虫の数はあまり変化しないが、肺に鉤虫が移動して誘導される2型炎症の指標、IL4,IL5,IL13の発現が肺で増強し、組織学的にも強い炎症が誘導されることがわかった。すなわち、好塩基球自体は鉤虫による炎症を誘導する側ではなく、特に全身の炎症を抑える働きがあることになる。

実際、鉤虫による2型炎症には自然リンパ球として知られる、抗原特異性のないリンパ球の一つILC2が関わることが知られており、Ragが欠損したマウスでも同じように炎症が誘導される。これらの結果から、著者らは好塩基球は鉤虫により誘導されるILC2の活性化を抑えているのではと考え、好塩基球を除去した肺での遺伝子発現を調べ、コリン作動性神経から分泌される神経ペプチドに対する受容体の発現が減少することを発見した。

すなわち、鉤虫に反応してILC2は2型炎症を起こして抵抗するが、神経から分泌される神経ペプチドはILC2を刺激して2型炎症を抑える調節役を演じている。このとき、好塩基球は ILC2上の神経ペプチド受容体の発現を高めてブレーキをかけ、炎症が行き過ぎないよう調節していることがわかった。このため、好塩基球を除去してしまうと、抑えが効かなくなり炎症がオーバーシュートしてしまう。

あとはこのシナリオが正しいかどうか確かめる実験を行い、

  • 神経ペプチドはILC2に働いてIL5やIL13の分泌を抑え、2型炎症を抑える。
  • このときプロスタグランジンも協調してILC2の活性を抑える。

を確認し、このシナリオが妥当であることを示している。

鉤虫感染後に好塩基球が増加することは知られていたようだが、その意義はこれまでよくわかっていなかった。この論文は、好塩基球が寄生虫をアタックするのではなく、寄生虫に対する組織反応をコントロールして組織の恒常性を維持するのに関わることを示しており、しかも神経と炎症細胞との相互作用を調節しているという、予想外の結果で、同じことが人間でも起こっているのか、ぜひ知りたいものだ。

カテゴリ:論文ウォッチ

8月27日 ゲノムから見るダニの生態 (9月3日号 Cell 掲載予定論文)

2020年8月27日
SNSシェア

10年前まで、動物や植物の全ゲノム解析はトップジャーナルに掲載されるのが普通だった。しかし、それ以降はゲノムを解析したというだけでは専門誌に回され、トップジャーナルに掲載されるためには、ゲノムから読み取れる面白いストーリーを示す構想力が必要になっている。

今日紹介する中国のダニゲノムコンソーシアムからの論文は、住環境が近代化した今でも私たちを悩ませているダニのゲノムを比較し、地域の環境とそこに生きる人間や家畜に合わせて進んできたダニの進化について、面白いストーリーに仕上げた研究で、めでたく9月3日号のCellに掲載される。タイトルは「Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities (ダニゲノムの比較解析により遺伝的多様性と病原体媒介能力の関係が明らかになる)」だ。

この研究だが、ストーリーという点では、まず今も私たちの身近に存在し、医学的にも重要なダニを対象にした点、そして中国という広い国土のダニ分布マップを作成し、そのゲノムから細菌、動物、家畜、人間などのダニと関係する様々な生物を考え直した点、そして吸われる側から是非共知りたい吸血能力について詳しく解析している点がハイライトだろう。

日本で問題になる家ダニは、ツメダニとチリダニのことだが、この研究で対象にしたのは動物の血を吸う6種類のダニ(シュルツェマダニ、フトチゲマダニ、カクマダニ、Hyalomma asiaticum, クリイロコイタマダニ、オウシマダニ)で、長い遺伝子長を解読できるPacBioと普通の次世代シークエンサーを組み合わせて、まず全ゲノムのレファレンスを作成し、それに基づき、中国全土から採取した600個体を越すダニの全ゲノム解析を行い、そこから何が読み解けるのかストーリーを提示している。

今後の研究には、それぞれの種のゲノム構造も重要だが、それぞれの種の系統関係以外は、専門外には退屈だと思うので、面白いストーリーだけをピックアップして紹介する。

  • まず吸血性だが、血を吸って生きるように遺伝子が変化していることがわかる。すなわち、様々な動物の血液を栄養源とすることから、ヘムを細胞内に輸送するシステム、凝血を防ぐペプチド分解酵素システム、解毒のためのシステムに関わる遺伝子が拡大している。さらに面白いのは、ヘモグロビンをふんだんに摂取することから、ヘムタンパク質の代謝に関わる独自の遺伝子群をほとんど失っていることだ。また、様々な動物に取り付いて生きるため、他の節足動物とは異なる独自の自然免疫システムを発展させている。
  • さらに、吸血時にこのようなシステムに関わる遺伝子を動員する転写システムが存在し、例えば血を吸い始めるとTMPRSS6セリンプロテアーゼの転写は3倍から、種によっては100倍近く高まる。
  • このような動物の血液を栄養に変える遺伝子数が多いほど、様々な動物に取り付いて生きることができ、結果広い範囲に分布している。一方、寄生する動物が限られているダニでは、ペプチダーゼや解毒システムに関わる遺伝子数は低下するが、吸ってもいい血液を区別するセンサーを発達させている。

以上、読めば読むほど吸血のためによくできているなと思うが、この論文では遺伝子操作で確かめることは全く行われていない。

チリ的分布で面白いのは、様々な環境に対応できる種が広く分布していることで、中国で広く分布しているフタトチゲマダニは、何とニュージーランドから鳥に乗ってやってきたようで、最初から適応力が高い。

一方ほとんど同じ動物に寄生するオウシマダニも中国南部では広く分布するが、ホストが限られることから、それに適応した結果、各地のオウシマダニを比べると遺伝的な多様性が見られる。

そして医学的に最も重要な、ダニが持っている細菌叢を調べると、それぞれの種が持っている細菌叢は多様だが、最近の多様性と病原媒介能力とは必ずしも相関するものではなく、リケッチアなど個々の病原菌との関係が最も重要であることも示している。

読んでみると、近代化された生活でもしぶとく人間の生活に取り付くダニのしぶとさがよくわかる論文だが、残念ながら面白い話というだけで、深みはあまり感じられなかった。

カテゴリ:論文ウォッチ

8月26日 制御性T細胞(Treg)機能を持ったCAR-T (8月19日号 Science Translational Medicine 掲載論文)

2020年8月26日
SNSシェア

制御性T細胞はいうまでもなく、現阪大の坂口さんの発見で、わが国免疫学の貢献の中でも大きな発見だと思う。チェックポイント治療は免疫を増強する方向の操作だが、Tregの場合、自己免疫病や移植拒絶など免疫を抑える切り札としてri利用できるのではという大きな期待がある。しかし、私たちの体に存在するTregを自由に操作して治療を行う技術の開発は遅れている感が強い。

今日紹介するカナダBritish Colombia大学からの論文は生体内のTregを操作する代わりに、現在ガン治療で利用が進むchimera antigen receptor T細胞(CAR-T)技術をTregにも応用して、免疫抑制能を持つCAR-Tregを作って治療に使おうという発想の研究で、Tregの利用に道を開く可能性がある面白い研究だとお思った。タイトルは「Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells(キメラ抗原受容体と共受容体シグナルドメインのヒト制御性T細胞での機能)」で、8月19日号のScience Translational Medicineに掲載された。

この研究の目的は、動物モデルでCAR-Tregを作成するために導入するキメラ抗原受容体の条件を決めることで、抗原認識のためにはHLA-A2、導入した細胞の識別のためにMyc-Tag、T細胞シグナルとしてCD3ζ、そしてTreg機能に関わると考えられる様々な共シグナル分子を持ったキメラ抗原遺伝子を作成し、これをヒトT細胞に導入している。

こうして作成したCAR-Tregを、マウスにヒト末梢白血球を移植しておこるGvH反応を抑制できるかどうか調べている。様々な共シグナル分子を調べているが、結局最もオーソドックスな野生型CD28分子をCD3ζの前に結合させたキメラ抗原受容体が最も高いGvH効果を示した。また、CD28-CAR-Tregは移植後7日までマウス体内で維持されることも確認している。

あとは、試験管内の刺激実験系を用いて本当にこうして作成したCAR-Tregが、これまで知られているTregの特徴を備えているかどうか詳しく検証している。様々な実験が行われているが、

  • CD28共シグナルはTreg分化と機能に関わるHeliosの維持に関わっており、他の共シグナルにはこの機能が存在しないこと。
  • CD28共シグナルにより、細胞周期と細胞代謝に関わる遺伝子セットが誘導されること。
  • 試験管内で樹状細胞の活性化を抑えることで、免疫抑制に関わること、

など、これまで知られているTregの作用メカニズムと合致しており、確かにCAR-Tregが作成可能であることを示す説得力のある結果だと思う。

この研究ではマウス体内でおこるヒトT細胞によるGvHという特殊な系で、HLA抗体が認識するのはヒトT細胞だけになるが、全身の細胞がHLAを発現している人間では、異なる抗原を探す必要がある。しかし、CAR-Tregが利用できると、臨床的に利用できるというだけでなく、Treg自体の理解にも大きく寄与するのではと期待できる。新しいTreg研究がCAR-Tから生まれる予感がする。

カテゴリ:論文ウォッチ

8月25日 胎盤の細菌感染を除去するNK細胞(9月3日号 Cell 掲載予定論文)

2020年8月25日
SNSシェア

この1週間、変わり種の論文を紹介してきた気がする。

「スマフォによる糖尿病診断」、「ミトコンドリアによる神経運命決定」、「セラミドによる線維化の抑制」、「高齢者の血液によるガンの悪性化」、そしてTcRレパートリーからのガン診断」などだが、意表をつく論文に目が行きやすいこともあるが、この週は特にこの類の論文が目立った気がする。実際には、まだ紹介しきれていない論文が二編残っている。

今日紹介するハーバード大学からの論文はそのうちの一編で、本当かな、論文のための論文と違うかな、などと感じるところもあったが、学ぶところも多かった。タイトルは「Decidual NK Cells Transfer Granulysin to Selectively Kill Bacteria in Trophoblasts (脱落膜に存在するNK細胞はグラニュロリジンを受け渡すことで栄養膜細胞内のバクテリアを殺す)」だ。

意外とマウスと人は進化的に近く、胎盤の構造も似ており、母親側の子宮に形成される脱落膜の中に、胎児側の絨毛から絨毛外栄養幕細胞が突き刺さった構造ができている。子宮は一種体外組織と言ってよく、当然細菌感染に晒される確率は高い。

この研究では、細菌を殺す活性を持つグラニュロリジンの発現が、脱落膜に存在するNK 細胞で高いこと、そしてパーフォリンヤグランザイムが存在する細胞障害性の顆粒だけでなく、細胞質にも存在するという発見から始まっている。

この結果から、おそらく脱落膜ではNK細胞がグラニュロリジンを介して細菌感染を防御しているのではと考え、栄養膜細胞株にリステリア菌を感染させる実験で、NK細胞がリステリアを殺せるか試験管内で調べている。結果は期待通りで、細胞外のリステリアも、細胞内のリステリアもNK細胞により殺されることがわかった。重要なことは、リステリアへの障害性には、NK細胞のキラーメカニズムである脱顆粒は必要ないこと、また細胞内のリステリアは殺されても、栄養膜細胞自体は障害を受けないことを確認している。これが、この研究のハイライトで、このメカニズムを追求した結果、

  • 脱落膜に存在するNK細胞(dNK)は末梢のNK(pNK)より高いグラニュロリジンを発現しており、リステリア殺傷効果が高い。
  • dNK細胞は栄養膜細胞と接触すると、おそらくNK細胞受容体を用いて細胞質同士が繋がるブリッジを形成するが、それ自体は栄養膜細胞障害性はない。
  • このブリッジを通して、小さな分子はNK細胞から栄養膜細胞へと受け渡されるが、グラニュロリジンもこのメカニズムを介して栄養膜細胞へと移行し、細胞内のリステリアを殺傷する。
  • このブリッジ形成にはアクチンが関わる。
  • マウス妊娠子宮にリステリアを感染させる実験で、グラニュロリジンを過剰発現したマウスは流産率が低下する。NK細胞を除去すると、この効果はなくなる。

以上、NK細胞が妊娠中の感染を防ぐ重要な役割をしているという結果だ。一般的に実験動物は清潔に維持されているので、このような差はなかなか気づかれないのだが、おそらく野生では重要ではないかと納得している。

カテゴリ:論文ウォッチ

8月24日 T細胞受容体レパートリーの変化からガンを診断する(8月19日号 Science Translational Medicine 掲載論文)

2020年8月24日
SNSシェア

機械学習は任意に選んだ指標と予想したい状態の間に何らかの相関があれば、私たちの感覚では気づかない変化を学習して、かなり正確な予想を可能にしてくれる。このことから、ガンの診断分野では、我が国を始め多くの研究プロジェクトが進んでいると思う。

今日紹介するテキサス大学サウスウェスタン医学センターからの論文はガン早期診断のための機械学習についての研究と片付ければそれまでだが、ガンに対する免疫反応を指標に機械学習を行なっている点、すなわちガンそのものではなくガンを映し出す鏡に映った像を利用している点で、これまで読んだ中では最も面白いと思った。タイトルは「De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection (ガンの非侵襲的診断に向けたガンに関わるT細胞受容体の予想)」だ。

多くのガン患者さんにチェックポイント治療が有効であることは、ガンに対するT細胞免疫が成立していることの証拠だが、このことはガン特異的な何らかの抗原を認識するT細胞受容体(TcR)が誘導されていることを意味する。とすると、ガンの発生には通常長い時間がかかるので、かなり早い段階からガン特異的TcRが誘導されている可能性があり、どのTcRがガン抗原特異的であるかがわかると、ガンの代わりに反応するTcRを見つけて診断することは原理的に可能だ。

しかし、個別のガンに反応しているTcRを特定することなど、実際の臨床では簡単でない。そこで機械学習を登場させて、TcRの可変部アミノ酸配列から、ガンに特異的と考えられるアミノ酸配列を導き出そうと著者らは考えた。はっきり言って、この発想が研究のすべてで、言われてみればかなり説得力があることがわかる。

この研究ではまずガン組織のゲノム解析データベースからTcRβ鎖の最も変化が激しいCDR3領域の配列を取り出し、ガンのサンプルとして機械学習させるとともに、正常コントロールとして末梢血の遺伝子データを用いて学習させ、あとはこのAIの性能を様々なデータベースを用いて検証している。

最初にガンのネオ抗原や、ガンウイルス、インフルエンザウイルスと反応することがわかっているTcRレパートリーを用いて、機械学習の能力を検証し、

  • TcRによるガンの診断は組織適合抗原に依存しないこと。
  • 学習に用いたデータに存在しなかったTcRでも、その性質からガン特異的であることを診断できること。
  • 学習にはガン組織に浸潤しているT細胞のデータが用いられているが、末梢血で診断が可能なこと。

をまず確認している。

その上で、この学習結果から導き出せるガンらしさの指標Cancer Scoreを考案し、調べたほとんどのガンでCancer Scoreを用いてガンと、正常人や感染症の人を区別できることを示している。驚くことに、診断の難しいすい臓ガンでも、末梢血を用いてAUC0.99という高い診断能力を示している。

さらに初期ガンから診断が可能かも調べており、すい臓ガンでもステージIIの段階からAUC0.93という確率で予測が可能であることを示している。

最後に、ゲノム解析ではなく、末梢血での発現遺伝子データベースからもTcRを抽出して診断に持ちられるか、腎臓ガンとグリオーマで調べると、AUC0.85前後の予測能力があることを示している。

実際の臨床に応用できるかはさらに研究が必要だろうが、個人的には大変興味を持っている。まず、機械学習研究の中では発想が新しい。しかも、TcRβ鎖のCDR3だけでここまでの性能を叩き出しおり、TcRαもうまく使えればさらに精度が上がる可能性がある。そして何よりも、独立した指標としてCancer Scoreを提案できているので、このスコアを他の診断指標と組み合わせることも容易だと思う。期待したい。

カテゴリ:論文ウォッチ
2024年4月
« 3月  
1234567
891011121314
15161718192021
22232425262728
2930