カテゴリ:論文ウォッチ
7月30日:毎日記録し続ける科学(Genome Biologyオンライン版掲載論文)
2014年7月30日
今腸内細菌叢研究はトレンドになっている。理由の一つは、次世代シークエンサーのおかげで常在している細菌の種類やその比率を簡単に調べることが出来るようになったことが大きい。一昔前は腸内細菌叢の検査と言うと、先ず細菌を培養して、現れるコロニーの性質を調べて細菌の種類を特定する必要があった。これはかなり専門的な検査で、気軽に行える研究ではなかった。そこに次世代シークエンサーが現れて、多くの細菌のゲノムが解読された。この結果、小さな遺伝子断片があればどの細菌がどの位の比率で存在するのかを調べることが可能になった。必要ならどの研究室でも腸内細菌叢の研究が可能になったわけだ。口内や腸内の細菌叢は私たちの食生活の影響を最も受けている。新しい方法で腸内細菌叢を調べ始めると、思いもかけないことが続々明らかになっているのが現状だ。トップジャーナルに掲載されるこの関係の論文も増えていることは間違いない。ただこれまで紹介した論文は、生活習慣病などとの関係に絞って調べた研究が多かった。今日紹介する論文はこれとは全く異なる大変な研究だ。1年365日毎日毎日便や唾液を採取してそこに住む細菌の種類を調べ、その結果を分析した研究だ。実験する研究者も大変だろうが、毎日サンプルを採取する被験者になった人達も大変だ。マサチューセッツ工科大学からの論文で、Genome Biologyに掲載されている。タイトルは、「Host lifestyle affects human microbiota on daily timescales(宿主のライフスタイルは日々体内の細菌叢に影響している)」だ。研究は簡単だ。毎日採取される便と唾液サンプルからDNAを抽出し、生物の系統関係を知るために使われる16SリボゾームRNA配列を次世代シークエンサーで調べる。勿論日々の体調や病気については全て記録する。ただそれが1年にわたって続くので、データの示し方が難しい。10万サンプルの解析を行ったとあるので、そんなきとくな人を数多く調べたと思うが、論文では2人の経過が紹介されている。それでも示されるデータは正直わかりにくい。間違った解釈をしていないか心配だが、そこを独断でまとめると次のようになる。便や唾液の細菌叢は決まった生活をしていると、全体的には何ヶ月もにわたって結構安定している。アメリカ東部の話だろうが、あまり季節の変化もない。ただ、一つ一つの細菌を仔細に見ると、勢力争いが毎日起こっているのもわかる。この勢力交代はなんと1日単位で起こる。この様な変化に最も影響するのが、前の日に食べた食物繊維の量で、15%の細菌種の勢力に影響している。面白いのは、環境が変わると細菌叢はテキメンに変化する。被験者の一人は研究中に1ヶ月以上の旅行に出かけるが、生活圏の変化はすぐに腸内細菌勢力図の変化につながる。ただ、この変化は家に帰り落ち着いた生活を送るようになると2週間程度で元にもどる。もう一人の被験者はサルモネラの食中毒にかかる。勿論大きな腸内細菌勢力図の変化が起こる。それまで半分を占めていた細菌群が1%以下に落ち、普通なら少数勢力が65%を占めるまでになる。問題は、病気から回復してもこの状態が3ヶ月も続くことだ。この変化が身体にどのような影響があったのか、分析が待たれる。図は理解しにくい論文だったが、腸内細菌叢が確かに毎日の生活のバロメーターになっていることを実感する納得の論文だ。今後10万サンプルの結果に拡大して新しい論文がまとめられると期待できる。ビッグデータは便の中にも転がっている。21世紀はゲノムレベルで一人一人が記録し続けられる世紀になる予感がする。我が国のヨーグルトや乳酸飲料メーカーもこれまで腸内細菌叢の研究を進めて来ていることは聞いているが、この位徹底した研究が行われているのだろうか?実際よく売れている商品では1年に1000億近く売り上げている。利益の一部をマーケティングだけでなく、徹底した科学データ採取に使うことも重要だと思うがどうだろうか?
7月29日:ground state (Cell Stem Cellオンライン版掲載論文)
2014年7月29日
ES細胞もiPS細胞も多能性細胞として分類しているが、本当は培養する人によって状態がバラバラであることが普通だ。言い換えると、同じ名前で呼んでいても自分と他の人が同じ細胞を見ているのか本当はわからない。しかしこの状態が続くのは、再現性を尊ぶ科学にとっては致命的だ。この問題を解決しようとしたのがケンブリッジのAustin Smithで、マウスES細胞を2つの分子阻害剤で培養する画期的な方法(2i法)を開発し、誰でもが同じ状態のES細胞を扱えるようにし、これを多能性細胞のground stateと呼んだ。この概念は、細胞のエピジェネティックな状態が最終的には細胞が置かれた環境によって決まることを示し、ground stateを実現する培養法の開発が、iPS発見に続く重要な課題であることを示した点で大きな意味を持つ。私はドレスデンでこの話を初めて聞いたが、バラバラの状態のiPSが培養条件だけで一つの状態に揃うと言う話を聞いて大変感激した。しかし同じground stateをヒトで実現することはまだうまく行っていない。今日紹介するボストンMITからの論文はヒトES細胞でground stateを実現する培養条件を系統的に調べた研究で、Cell Stem Cellオンライン版(10月号に掲載される予定)に掲載された。タイトルは「Systemic identification of culture conditions for induction and maintenance of naïve human pluripotency(ナイーブなヒト多能性を誘導維持するための培養条件の系統的探索)」だ。実はこの論文の著者Rudolf Jaenischこそがヒトでground state実現のために先鞭を付けた研究を発表している。ただマウスと比べるまだまだ不完全であることがわかっていたので、ground stateを実現したとは言えないし、彼自身も言っていなかった。その後、彼の弟子を含む数グループがヒトのナイーブな多能性を誘導する培養条件を相次いで論文発表している。この若い研究者の動きをゆっくり見ていた老研究者が、一つの手本を示した様に見えるのが今回の論文だ。この論文のポイントは、これまで多能性を定義するために利用していたOct4遺伝子の発現調節部位を、最も未熟な時に発現する部位と、少し分化してから発現する場所に分けて、本当の未熟段階を定義出来るようにした点にある。こうすることで、ground stateに近い段階の細胞では発現が見られるが、少しでも分化すると発現が消えるマーカーを使って培養条件の探索が可能になった。長い話は全て省くが、この結果、5種類の分子阻害剤と、2種類の細胞増殖因子を(LIF,Activin)を加えることで、このマーカーが発現するだけでなく、マウスで定義されたground stateにかなり近い状態が実現できることがわかった。ただ、マウスの場合、増殖に支持細胞は必要ないが、この研究ではまだ支持細胞を用いており、完全なground stateと言う所までは来ていない。ただ驚いたことに、新しい標識法を用いると、これまで報告された培養方法では全くマーカーの発現が見られないことだ。またJaenisch等が今回特定した阻害剤や増殖因子を用いても、ES細胞培養によく用いられるKSRと言う添加剤を加えると全くマーカーの発現が無くなる。最後に、このホームページでも紹介したが、Jaenischの弟子Hanna等が用いたマウス胚盤胞へ移植してキメラ作成を見る方法も試み、この方法が全く用をなさないと弟子を切り捨てている。勿論、他人に厳しいだけでなく、多能性に関して自分たちが提案して来た概念も間違っている点ははっきり認めて今回の論文が書かれている。山中iPSの報告でショックを受け、その後Smithのground stateにおそらく強く動かされたJaenischは、ヒトground state実現こそがこの分野の次のキーポイントだと狙いを定め着実に進んでいることを実感する。Ground state概念の本家本元Smith研究室でも高島さんがこの課題に取り組んでいる。幸い、条件は少し違っているので論文として日の目を見るだろう。しかしヒトiPSのground state実現へ向けた我が国の取り組みは遅れている印象がある。発生も、成長も、リプログラムも全てエピジェネティックな過程だ。そして私たちの身体の中でこのエピジェネティックな状態を一定の状態に整えているのが細胞の置かれた環境だ。この当たり前の事実を頭に叩き込んで、iPS研究を推進して欲しい。
カテゴリ:論文ウォッチ
7月28日:コモンマーモセットのゲノム(Nature Geneticsオンライン版掲載論文)
2014年7月28日
毎週のように新しい動植物の全ゲノム解析の論文が掲載される。最近では私が顧問をしている生命誌研究館の研究者が材料として使っているクモやナナフシ、更にはイチヂクコバチに至るまでゲノムが明らかになって行く。驚くのはそれぞれの論文が、個々の生物に応じたシナリオを提供出来ていることだ。言い換えるとゲノムから覗くストーリーはとても面白い。今日紹介する論文は、旧世界ザルの代表コモンマーモセットのゲノムを調べる目的で集まった国際コンソーシアムの研究でNature Geneticsオンライン版に掲載された。タイトルは「The common marmoset genome provides insight into primate biology and evolution (コモンマーモセットのゲノムはサルの生物学と進化についての真相を教えてくれる)」だ。コモンマーモセットは20センチ足らずの身長と、生殖サイクルが短いことから実験動物化が進んでおり、我が国でも実験動物中央研究所で生産が行われている。そのせいか、私にとっても実験動物としてのイメージが強く、生態等についてはほとんど知らなかった。この論文からこれまで知らなかった多くのことを学ぶことが出来た。さてマーモセットのゲノムは22、6億塩基対、22000個の遺伝子を持つが、サルにだけ見られる多くの領域が存在しており、マウスやラット等のげっ歯類からサルが分岐した9000万年前からの進化過程研究には重要なデータを提供することは間違いがない。私も知らなかったが、マーモセットは、1)群れの中で一組のつがいだけが妊娠し、他の生殖は抑制されていること、2)ほぼ全ての妊娠が2卵生双生児であると言う不思議な生殖過程の特徴を持っている。この特徴を念頭に置いてゲノムを見たとき最も面白いのが、マーモセットに特有のマイクロRNA(miRNA)が22番染色体と、X染色体に数多く見つかることだ。miRNAはmRNAから蛋白への転写を調節する、蛋白をコードしていない調節性RNAだ。しかもマーモセット特異的miRNAは胎盤に発現している。miRNAが一つの遺伝子ではなく、複数のセットの遺伝子の発現量を抑制的に調節する機能を持つことを考えると、サルへの進化、及び2卵生双生児を妊娠すると言う特徴と、胎盤に強く発現するmiRNAの関連は今後の面白いテーマになる。2卵生双生児について面白い発見は、WFIKKN1と呼ばれる、分泌型のタンパク質分解酵素の特定の多型で、マーモセットでも双子を妊娠しない種ではこの多型がヒトと同じになっていることから、双子妊娠に深く関わることは間違いがない。他にも、マーモセットは大きなサルから進化の過程で小さくなったことが推定されているが、人間の伸長決定にも関わっていることがはっきりしているIGFR-1分子を中心にマーモセット特異的多型が集まっている。人間でもピグミーやマサイ族など伸長に関わる多型の解析が進んでいることを考えると、マーモセットも伸長を決める遺伝因子の解析に大きく貢献すると期待される。他にも免疫や血液発生にとっても面白い結果が示唆されているが、紹介はこれで十分だろう。ゲノム解明は新しい研究への第一歩だ。それぞれの種のゲノムが解明されることで、ゲノム研究に直接関わるかどうかを問わず、ゲノムを知らなかったときとは異なる質の研究が進められる。21世紀の幕開けにヒトゲノム計画終了の記者会見があったが、今から考えると確かに21世紀がゲノムの世紀になることを予見させるイベントだった。そう考えると、遺伝子発現やESTではマーモセット研究に貢献して来た我が国も、今回のゲノムコンソーシアムでは影も見えないのが残念だ。繰り返すが、日本はゲノム研究で大きく遅れた印象を禁じ得ない。
カテゴリ:論文ウォッチ
7月27日:シュレム管を知っていますか?(Journal of Clinical Investigateionオンライン版掲載論文)
2014年7月27日
2012年、韓国の科学技術大学院(KAIST)のMD PhDコースの審査に招かれたことがある。、KAISTは科学技術を担う研究者の育成に特化した大学院大学だ。運営などもソウル大学など普通の大学とはずいぶん異なっている。審査員に選んでいただいたおかげで韓国の教育、科学技術政策などよく勉強できたが、最も驚いたのはKAIST大学院に入ると、医学部卒業生は3年の徴兵が免除されることだ。ソウル大学を始め教育省管轄ではこの様な優遇がないらしい。必要ならこの様な差別を行えるのは先進的なのか、後進的なのか判断できないが、いずれにせよ医学部卒トップが大学院に来る。うらやましい限りだ。さてその時いろいろ世話をしてくれたのが、以前から知己があった血管生物学の洪さんで、この分野ではプロの仕事を続けて来た優れた研究者だ。その洪さんがシュレム管の発生について詳しく解析したのが今日紹介する論文で、The Journal of Clinical Investigationオンライン版に掲載された。タイトルは、「Lymphatic regulator prox1 determines Schlemm canal integrity and identity (リンパ管の発生調節因子prox1はシュレム管の分化と機能を決めている)」だ。自分が緑内障でもない限り、普通の人はシュレム管と言う言葉は初めて聞くと思う。これは眼球での房水の排出を調節している一種の脈管で、緑内障はシュレム管が詰まることが原因の一つになっている。これまでもシュレム管が血管やリンパ管と親戚だろうと言う話はあったが、洪さん達は今回、シュレム管の発生がリンパ管の発生によく似ていることを明確に証明した。元々洪さん達は血管やリンパ管を特異的に観察できる様々なマウスを開発していた。おそらく眼球を詳しく調べているうちに、リンパ管の発生を決めているprox1と呼ばれる分子がシュレム管に発現していることを見つけたのだろう。詳細は全て省くが、この仕事から次の様なシナリオが示された。シュレム管は静脈内皮に由来し、同じように静脈内皮由来のリンパ管内皮によく似ているが完全に同じではない。シュレム管は生後形成され、このリンパ管内皮に似ているが同じでなはいと言う性質のおかげで、房水をドレインする特殊な管を形成することが可能になっている。とは言え、発生にはリンパ管と同じメカニズムを共有している。例えばVEGF-Cが増殖に必要である点、また房水の流れと言う機械刺激に応じて分化が進む点、そしてこの機械刺激によりprox1分子が誘導され、シュレム管特異的な安定した内皮が発生維持されている点などだ。あまりなじみのなかった構造の発生が十分理解できた気がする。最後に、緑内障の原因を探る意味で、勿論老化マウスのシュレム管を調べている。その結果、内皮シートの構築が乱れ、線維芽細胞が周りに集まって一種の硬化症が起こり、血管が詰まる原因になっているようだ。ただ洪さんの論文では、この過程を防ぐ方法をはっきり示せていない。同じ号にシュレム管発生について調べたフィンランドのAlitaroのグループの論文も掲載されている。データの豊富さで言うと洪さんの論文が凌駕しており、内容はほぼ同じなので洪さんの論文だけを紹介したが、Alitaroの論文では低い濃度のVEGF-Cを一回投与すると、60日近くまで眼圧が低下することを報告している。今後VEGF-Cを眼圧の高いヒトの治療に使う可能性が模索されると思う。VEGF-Cを少し変化させてリンパ管やシュレム管だけに効く様な分子構造が出来れば、血管新生を心配せず利用できる更に理想的な治療薬が開発できるかもしれない。また洪さんの結果から見ると、線維芽細胞の増殖を局所的に押さえる様なお薬も効果があるかもしれない。私も少しは関わった血管研究の拡がりを実感する面白い論文だった。
カテゴリ:論文ウォッチ
7月26日:全ゲノムレベルでのメチル化解析の進展(Nature オンライン版論文)
2014年7月26日
30億塩基対のゲノムを持っている我々の一つ一つの細胞のゲノムは、同じ組織の細胞を比べても本当は同じではあり得ない。ただ変異が生まれる頻度は極端に低いため、統計上違いは無視して、全ての細胞はほぼ同じゲノムを持っていると扱える。しかし特定の細胞で遺伝子がどう使われるのかを決めているエピゲノムは、細胞の性質と直結しており、細胞ごとに異なっている。発生、成長、老化、またその逆のリプログラミングも全てエピゲノムの変化を反映している。話題のSTAP細胞も小保方さんから切り離せば、染色体に直接ストレスを与えた時、エピゲノムが一定のパターン(この場合多能性段階)へと変化するのかどうかが問題の本質だ。ただ、刻々変わるエピゲノムを追跡するためには、少数の細胞でゲノム全体にわたってエピゲノムを調べる方法の開発が必要だ。DNAメチル化はエピジェネティックな調節の一つの柱だが、今週は全ゲノムレベルでのDNAメチル化解析(メチローム解析)の論文が多く見られた。詳しくは紹介しないが、先ずケンブリッジのサンガー研究所から単一細胞でメチロームを調べる方法についての論文がNature Methodsに掲載されていた(Smallwood et al, 2014)。特にリプログラム過程を詳しく調べるのに有効な方法になるだろう。原理的に可能であれば、ほぼどんな方法も開発できると確信して良さそうだ。ゲノム全部について調べなくても、メチロームを代表すると考えていい方法も現在利用できる。MITのMeissner等によって開発されたReduced Representation Bisulfide Sequencing(RRBS)法で、例えば受精卵からの早期発生過程の様に少ない細胞しか得られない過程のメチローム解析に力を発揮する。このMeissnerの研究室、及び北京大学第三病院から、このRRBS法を用いたヒト早期胚発生過程のメチロームの変化についての解析がNatureオンライン版に掲載されていた。MIT及び北京大学の論文タイトルはそれぞれ「DNA methylation dynamics of the human preimplantation embryo(着床前のヒト胚のDNAメチル化動態)」と「The DNA methylation landscape of human early embryos(ヒト初期胚のDNAメチル化状態)」だ。両方とも初期胚のメチローム解析を行っている点で全く同じだが、相互に補完し合っている。残念ながらMITでは未受精卵を十分手に入れるのは難しそうで、精子、分割中の卵子、胚盤胞、及び成熟組織を用いて解析している。このギャップを埋めるため、マウスで詳しいメチローム解析を行い、ヒトと比べている。一方北京大学の方は完璧で、未受精卵、第一、第二極体、受精卵、2細胞期、4細胞期、8細胞期、桑実胚、内部細胞塊、着床後胚とほぼ完璧に細胞を集めてメチローム解析をしている。期待されたことではあるが、精子が卵子より強くメチル化されていること、受精後先ず精子からのDNAのメチル化が外れること、2細胞期卵で発生初期に起こる脱メチル化はほぼ完成していること、内部細胞塊の低いメチル化状態が、分化が始まると急速にメチル化されることなどが示されている。他にも、減数分裂の時に出来る極体も卵子自体と同じメチロームを示すことがはっきりしたことで、極体が卵子の質を調べる際の材料として利用できる可能性を示唆する。他にも、卵子でのみメチル化が維持されている領域が対立遺伝子特異的メチル化領域として受精後も維持され、一部がインプリントされるなど、専門家には重要な情報が満載だ。一方MITからの論文では内部細胞塊などを得ることが出来ないため、ES細胞を解析しているが、この結果からヒトES細胞では既にメチル化が進んでいることがよくわかる。MITの論文ではヒトとマウスで同じ細胞が比べられており、多くの遺伝子のメチル化がヒトもマウスも同じように変化する一方、ヒトとマウスで全く異なるメチル化パターンがLTRと呼ばれるレトロビールスが遺伝子に侵入した名残に見られることが示されている。これ以上は更に専門的になるので紹介しないが、例えば学生に講義するネタとしてはかなり多くの情報を得ることが出来る論文だった。このように新しい技術が開発されることで、各細胞ごとのエピゲノムのデータ蓄積はこれまで以上に加速すると期待される。勿論様々な方法で誘導されるリプログラミングの詳しい過程もこの中に含まれるだろう。ゴールドスタンダードのESやiPS樹立も時間はそうかからないのではと期待し始めている。
カテゴリ:論文ウォッチ
7月25日:統合失調症の早期診断(Natureオンライン版掲載論文)
2014年7月25日
不幸なことだが私が医学生だった頃、精神疾患は社会が造る病気だと主張して、遺伝性があることを公言すると攻撃するグループがいた。私の近くでも、当時ユングの読書会を主催していただいていた精神科の先生がタブーを破ってしまって学生から暴力を受けたことがあった。しかし、統合失調症で言えば一卵性双生児の一致率が50%に近い。間違いなく強い遺伝的傾向があることを示している。しかし逆から見ると、100%でないことは、遺伝子は同じでも他の介入によって病気を防ぐ可能性があると言うことになる。そして介入するためには早期診断を行う必要があるが、現在もなお疾患特異的マーカーは見つかっていない。今日紹介する論文は、遺伝子多型の組み合わせで統合失調症を診断できないか可能性を調べた研究で、我が国の藤田保健衛生大も加わった世界規模の共同研究で、Natureオンライン版に掲載された。また、朝日新聞も7月22日付けで鈴木記者がこの論文を紹介している。タイトルは「Biological insights from 108 schizophrenia-associated genetic loci(108個の統合失調症関連遺伝子座から得られる生物学的示唆)」だ。勿論統合失調症については多くのゲノム解析が行われて来た。ただ、多くの遺伝子が複雑に絡み合って病気が発症するため、候補になる遺伝子多型は多く発見されたが、なかなか理解が進まなかった。この問題に、ならば更に多い数の統合失調症の患者さんの遺伝子多型をしらべてみようという動機で約37000人と言う膨大な数の患者さんの全ゲノム領域をカバーする遺伝子多型を調べ、約11万人の対象と比べたのが今回の研究だ。この中には1235人の親が発症した親子が含まれており、より詳しい解析が出来るようになっている。では規模を上げることで何がわかったのか?先ず、統合失調症に関連すると確認できる多型が存在する新しい遺伝子座が83発見され、全体で108の遺伝子座が統合失調症と関連づけることが出来た。この108の中には元々統合失調症に使われる薬剤標的であるドーパミン受容体を初め、これまでは関連が認められなかった神経伝達に関わるカルシウムチャンネル遺伝子などの多型が含まれている。さらに、発見された多型の見られる遺伝子のほとんどは脳で発現しており、統合失調症に関わるための条件を満たしている。この結果を受けて、この論文でも、また朝日の記事でも、この中から新しい標的が見つかり、治療薬が開発できると単純に結論しているが、本当はそう簡単ではない。先ず、多型と言ってもガンのようにその遺伝子に直接変異が存在するわけではなく、その遺伝子の発現を調節する部位の多型が大半だ。更にそれぞれの遺伝子座の関わり方を調べると、多数の遺伝子が絡み合って病気を発症させていることが数理的解析から明らかだ。しかし、現在の数理的手法では遺伝子間の関係や階層性がはっきりしない。さらに、遺伝子発現に関わる多型ということでeQTL解析で統合失調症の原因となりうる遺伝子がないか調べてもはっきりした結果が得られない。従って、私から見ると今後新しい情報処理方法を開発して、このデータを生かして行く方向の仕事が更に必要だと思う。とは言え、関連遺伝子が108確認されたことで、統合失調症発症リスクを計算できるようになった。これを用いて、デンマーク、スウェーデン、アメリカ、オーストラリアの多型結果を実際の発症と重ね合わせてリスク計算をすると、確かに多くの関連多型が重なるほどリスクが高くなる。3種類の集団を解析しているが一つの集団ではオッズ比が20%に達しており、かなり高い。従って、統合失調症の早期診断と言う意味では大きな一歩だと思う。次に予想されるのは、親が発症した家族に生まれた子供さんを早期に診断し、合理的な介入を行うコホート研究だ。しかし、この様な研究が我が国で可能なのか少し心配だ。もし出来ないとしたら、我が国の精神医学は私が学生の頃とほとんど変わっていないことになる。そうでないことを祈る。
カテゴリ:論文ウォッチ
7月24日:食料問題に対するScience誌の本気(7月18日号Science誌掲載論文)
2014年7月24日
5月25日サイエンス誌が格差問題を特集し、科学の対象として格差問題を扱う意志を示したことを紹介した。無論、格差問題に留まらない。温暖化問題を初め地球の抱える問題は深刻だ。持続可能な地球維持のための政策には科学的分析が必須と考え,この問題に挑戦する論文を優先して掲載し、トレンドを造ろうとする意志だ。ただ7月22日紹介したように、すぐに想像力豊かな論文が集まるわけではない。他の分野と比べた時論文の質は犠牲になるかもしれない。しかし科学として成熟するまで時間がかかるとしても、それを後押しするのがトップジャーナルの使命だと言う気持ちだ。今日紹介するミネソタ州環境研究所からの論文は、サイエンス誌の意志がはっきりと見える研究だ。タイトルも「Leverage points for improving global food security and the environment(世界の食料問題と環境問題を改善するための攻めどころ)」。実際leverage pointを訳すのは少し難しい。直訳すると梃の原理で少し変えれば大い効果が出る様なポイントと言う意味で使われている。いずれにせよ、食料安保や環境問題に世界全体にわたって平均的な政策を進めるのは現実ではないので、先ず効果の高い所に政策を集中させるとしたら、どこを攻めればよいかについて研究している。詳しい紹介は全て省く。アメリカ、中国、インド、アフリカ、ブラジルなどについていわゆるビッグデータを統合的に解析し、食料増産につながる政策効果の高い地域、食物などを特定するとともに、農業に起因する地質汚染や炭酸ガス排出問題への提言を行おうとしている。最も重要な結果は、中国、南欧、アフリカ、インド、アメリカの農地の中で、小さな努力で食料増産が容易に達成できる地域を特定している。もし世界の全農地の持つ能力の50%まで農産物を増産できれば8.5億人の食料をまかなえるが、増産余地のある農地の半分は世界の農地の5%に集中していると言う結果だ。即ち、適切な政策を集中的に行えば、高い効果が期待できることになる。実際分析から、中国では灌漑水が有効に使われておらず、この点の改善で食料増産が可能だと言った地域に応じた政策も示唆されている。他にも、農業と森林伐採による炭酸ガス排出問題、肥料による土壌汚染問題など、各項目について世界規模の分析が行われており、おそらく請われれば結果に基づいて提言は可能だろう。いつも読み慣れている論文とは大分違うし、実際正確な査読が可能だろうかと首を傾げたくなる論文だ。しかしこの様な論文に触発され、政策提言に直接つながる科学を目指す研究者が増え、更に論文の質が上がると言うサイクルが始まったのかもしれない。折しもアメリカアカデミー紀要のオンライン版に牛肉生産は他の農業と比べて環境負荷が10倍になることを示した論文が掲載されていた。(Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production of the Unites States)。私たちはタバコの危険性、高血圧、メタボと科学を盾に生活改善を迫って来たが、今日紹介したトレンドから、科学が私たちの生活の原罪とも言える核心にまで迫って来た予感がする。しかし、イラク、ウクライナ、ガザでの戦争を見ていると、この論文に欠けている視点もわかる。紛争を停止することでどれだけの食料増産が可能か、そんな論文も見てみたい。
カテゴリ:論文ウォッチ
7月23日:新顔ホルモンKisspeptinを利用した体外受精(7月21日号Journal of Clinical Investigation掲載論文)
2014年7月23日
確かめたわけではないので聞き流して欲しいが、日本の体外受精による新生児比率は3%に達していると聞いた。先進国平均は大体1%前後、一方イスラム圏では4%近くに達するとされているので、少し驚きの数字だ。それを反映しているのか、ヒトクローン作成成功を報告する論文は2報とも日本人が筆頭著者になっている。我が国にこの分野の優秀な技術が蓄積していることがわかる。今日紹介する論文は、体外受精時に卵子を採取する際、卵成熟を促すホルモンとしてKisspeptinがかなり期待できることを示す研究だ。タイトルは、「Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization (Kisspeptin54は体外受精治療を受けている女性の卵成熟をううどうする)」で、7月21号のJournal of Clinical Investigationに掲載された。Kisspeptinの遺伝子はKiss1と名前がついており忘れることのない名前だ。歴史の新しいホルモンで、我が国でもペプチド研究に強い武田薬品がこのホルモンの抗がん作用に注目して研究していたのを覚えている。この分子で検索すると、武田薬品研究所から出た2001年Nature論文が最初に来る。実際私もこの論文が出た時をよく覚えている。我が国の製薬会社の研究能力の高さを示すと心強く思ったこともあるが、故人となられたこの論文の著者の一人藤野さんを個人的にも存じ上げていたからだ。藤野さんは製薬企業の側からいつも、大学は基礎研究をしっかりするようにと激を飛ばしておられた。Natureの著者に言われるとつらいなと思いながら聞いていたが、今となってはこのような見識の方が我が国の製薬業界におられるのか心配だ。前置きが長くなったが、研究は簡単だ。Kiss1遺伝子変異があると思春期の性的成熟が阻害され不妊になることがわかっている。内分泌学的研究から、この分子が排卵につながるホルモン反応の最上位に位置していることが最近明らかになり、動物実験でこのホルモンを外から投与するとゴナドトロピンの分泌を誘導することが明らかになっていた。これらの結果から、当然体外受精治療で採卵時の卵成熟誘導にこのホルモンを使う可能性が考えられるが、これを確かめたのがこの研究だ。プロトコルは通常のFSH、ゴナドトロピン受容体刺激剤の組み合わせで排卵サイクルを同期し、超音波で卵が18mm以上の大きさに達した時様々な量のKisspeptinを皮下に一回投与している。その後採卵から始まる通常の過程の各段階で、採卵のし易さ、卵の成熟度、体外受精の成功率、妊娠成功率などを24人づつのグループで調べている。結果は予想通りで、投与量に応じて体内での様々なホルモン産生が上昇し、成熟卵の採取率も格段に上がる。また、成熟卵が安定して得られ、卵の質も高く6nmol以上投与された群で、2−3割の妊娠率があったと言う結果だ。いわゆるLHサージと呼ばれる状態を生理学的に誘導して、体外受精に適した成熟卵を安定して得るための新しい方法になる可能性がある。ともすると生殖補助医療では様々な技術が問題になることが多いが、新顔のホルモンが登場してプロトコルが変わる余地があったとは、まだまだ発展途上の技術のようだ。この使い方に亡き藤野さんならどんなコメントをするのか聞いてみたい。
カテゴリ:論文ウォッチ
7月22日:論文掲載の易しさからトレンドを見る(7月17日号Cell誌掲載論文)
2014年7月22日
今は出来るだけ多くの雑誌に目を通したいと思っているが、それでもNature, Cellと言ったトップジャーナルに掲載されている論文にはより注意を払っていることは事実だ。理由は簡単で、やはり読んで面白い論文が多い。実際雑誌でどのように論文を扱っているのかなどほとんど知らない時代、トップジャーナルに論文を送っても、それをレフリーに送ってもらうことすら難しかった。それだけ厳しいフィルターがかかっている。と言っても勿論チャンスがないわけではない。独立して初めて自分の教室からNatureに論文を通したときは皆で大騒ぎした。その後世間を知って、多くのトップジャーナルで論文がどのように扱われるのか理解し、またそれに関わるエディターと知り合いになると、幾つか問題に気づくようになる。いい悪いは別にして、この様なトップジャーナルではエディターが独立して次のトレンドの方向性を探して掲載することに強い意志を持っている。従って、論文自体の質は少々犠牲にしても、将来の可能性につながる論文が掲載されている可能性が高い。このこともトップジャーナルに掲載された論文が面白い理由だ。最近私が感じるのは、ヒトゲノムと精神活動をどう結合させるかに関する手探りの研究が多く掲載されている点だ。このホームページでもすでに4−5編、NatureやCellに掲載された自閉症に関する論文を紹介したと思う。今日紹介するワシントン大学からの研究もそんな一つだろう。7月17日号のCell誌に掲載された論文で「Disruptive CHD8 mutations define a subtype of autism early in development (CHD8遺伝子の機能を破壊する突然変異は発生初期の段階で自閉症の亜型を診断できる)」がタイトルだ。このグループはSimons Simplex Collectionと呼ばれる遺伝子異常の親子データベースの検索から、CHD8遺伝子機能が破壊される突然変異が自閉症と関わることを明らかにしていた。今回の研究のハイライトは、この遺伝子異常があると100%自閉症か知的障害を示し、正常人には認められないことを確認している点だ。即ち、この遺伝子の突然変異があれば自閉症様の症状を示すことが生まれる前から診断できると言う結果だ。更に、自閉症の一部は脳発生時の形成異常という器質的障害の結果であることも明確になった。事実、この遺伝子の突然変異では、頭の周囲が大きくなり、目の間が広く、目がくぼんでいる。他にも、ニューラルクレストと呼ばれる細胞の異常を思わせる消化管症状がほぼ全員に認められる。このように、この論文からもゲノム、身体症状、精神症状と様々な情報レベルを統合する方向への研究がエディターに好まれているなと言うのが理解できる。勿論器質的変化と精神症状を結びつけることで初めて論理的治療が可能になるかもしれないことを考えると、重要な仕事だ。特に顔の構造形成や腸の動きに関わるニューラルクレスト異常が基盤にあると言う発見は重要だ。しかしはっきり言って、ではどのような異常が基盤になっているのか切り込むと言う点では甘い論文だ。この遺伝子のノックアウトマウスは発生致死で、九大の中山さん達が研究して来ている。その研究から見ると、この論文が脳発生の基盤を調べる目的で行ったゼブラフィッシュの解析は余りにお粗末と言わざるを得ない。ひいき目に考えれば、ゼブラフィッシュを使うことで発生段階を操作する薬剤を開発しようとしているのかもしれないが、レフリーやエディターは甘いなと言う印象が強い。結論的に言うと、この部分は読後失望させる。ただ、レフリーが甘いなと思える論文がトップジャーナルに掲載されるときは、未来のトレンドを示しているかもしれないと深読できることは、教訓にしてもいいかもしれない。
カテゴリ:論文ウォッチ
7月21日:腸内細菌と直腸がん(7月17日号Cell誌掲載論文)
2014年7月21日
直腸がんでも他のがんと同じようにrasやp53の変異が見られるが、直腸がんに特徴的な変異もある。その筆頭がAPCと呼ばれる遺伝子だ。生まれつきこの遺伝子の機能が阻害されている方では、腸に多数のポリプが出来る。もう一つ、比較的大腸がんによく見られる変異として知られるのが、DNAのミスマッチ修復(DNAが複製されるときの間違いを直す修復機構)に関わる、MSH2、MLH1などの変異で、ミスマッチ修復分子とAPCの遺伝子変異は実に5割以上の患者さんに見られる。実際、両方の遺伝子に変異を持つモデルマウスでは、多発性ポリプが起こり、直腸がんの頻度も格段に上がる。私自身は、ミスマッチ修復がうまく行かないことで突然変異が増えてガンになると単純に思っていた。しかし今日紹介する論文はMSH2遺伝子が直腸がん発生に予想外の方法で関わることを示しており、発ガン過程が一筋縄でいかないことを再確認した。7月17日号Cell誌に掲載されたトロント大学からの論文で、「Gut microbial metabolism drives transformation of Msh2-deficient colon epithelial cells (Msh2を欠損した大腸上皮は腸内細菌の代謝物によりガンに転換する)」がタイトルだ。元々このグループは。腸内細菌が発ガンに関わる可能性について研究している。ただ、APC遺伝子のみ変異があるマウスで腸内細菌叢を変化させても、ポリプやガンの発生に影響がない。そこでこのAPCとMSH2両方の遺伝子の機能が阻害されたマウスを用いて調べると、今度は腸内細菌の関与がはっきり認められ、抗生物質で腸内細菌を除去するとポリプの数は減少し、がん発生もMSH2変異がないグループと同じ程度まで低下する。即ち、MSH2遺伝子欠損の発ガンへの影響はこれまで考えられて来たように突然変異が上昇するためではなく、腸内細菌を介して上皮細胞の増殖が上昇するためであることがわかった。次いでこの現象の分子基盤を研究し、腸内細菌が炭水化物を処理する際に代謝物ブチル酸が腸管で造られ、それがMSH2の欠損した上皮細胞に働くと、βカテニンと呼ばれる腸上皮細胞の増殖に必須分子が活性化し、この結果上皮細胞の異常増殖が誘導され、ガンになることを明らかにしている。なぜこれまでんミスマッチ修復酵素として知られて来た分子欠損が、細菌代謝物ブチル酸に依存した細胞増殖につながるかなど、まだ完全に解明できていない部分もある。しかし、MSH2遺伝子欠損が大腸がんに多い理由や、食生活が欧米型になることでなぜ大腸がんが増えるのかなど幾つかの疑問に答えてくれる面白い研究だった。ブチル酸を造る菌は特定出来ている様なので、これらの細菌を特異的に除去することで、大腸がんの発症率を大きく下げることが出来るようになるかもしれない。ヒトでも同じ事が言えるのか、是非研究を発展させて欲しい。
カテゴリ:論文ウォッチ