過去記事一覧
AASJホームページ > 2020年

9月17日 乳ガンの分裂異常を突く(9月9日 Nature オンライン掲載論文)

2020年9月17日
SNSシェア

遺伝子変異を調べてガンの治療方針を立てることが我が国でもようやく普及してきた。これは、ガンの増殖を推進しているドライバー分子に対する様々な分子標的薬が開発されたことが大きい。有名な例で言えば、肺ガンとEGF受容体変異やALK融合遺伝子などがそうで、変異を特定しないと治療の意味がない。ただ、分子標的薬がなくとも、一般的なガン治療法の治療効果の予測に役立つ遺伝子検査もある。例えば、DNA修復に関わる遺伝子の変異は、抗ガン剤の選択に重要な情報だし、さらにはガン抗原が増えることからチェックポイント治療の効果予測にも使われる。

今日紹介するオックスフォード大学からの論文は17q23染色体部位の増幅した乳ガンが持つ分裂時の脆弱性を解析して新しい治療法の開発を目指した研究で9月9日Natureにオンライン掲載された。タイトルは「Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer (17q23増幅が見られる乳ガンのTRIM37 による中心体の機能異常を標的にする)」だ。

細胞分裂を中心体がリードするのは当たり前と思ってしまうが、ガン細胞によっては明確な中心体なしに分裂するものがある。このため、中心体のコントロールに必要な分子PLKを標的とした薬剤はこの様な細胞には効果がない。乳ガン細胞も同じで、中心体がなくとも分裂糸を再構成して分裂できるためPLK阻害剤の効果はない。この研究では、17q23の増幅が見られるガンはPLK阻害剤に対する高い感受性を持つことに注目し、この感受性の分子メカニズムの解明を目指している。

したがって、ガン研究というより、ガン細胞を用いた細胞生物学研究といった印象が強い。いずれにせよ、まず17q23増幅領域にある40種類の遺伝子の中から、E3ユビキチンリガーゼの一つTRIM37が増幅により中心体非依存的分裂を抑制していることを発見する。実際、17q23増幅乳ガンでTRIM37をノックダウンするとPLK阻害剤に耐性になるし、TRIM37を過剰発現させると、17q23増幅がなくともPLK阻害剤の効果が高まり、細胞は分裂期に破綻し死ぬことを確認している。

次に、TRIM37が中心体非依存的分裂糸形成を阻害するメカニズムを探り、TRIM37が多くの中心体分子と相互作用し、ユビキチン化を通して分子を分解することを発見する。すなわち、TRIM37は中心体に集まる分子の分解を促進して分裂糸形成過程を抑制する作用があり、通常は中心体以外で異所性の分裂中心ができない様に見張っている働きがあることを明らかにする。

ところが、17q23領域が増幅してTRIM 37が上昇すると、分裂中心での機能分子が分解され、中心体非依存的分裂ができなくなる。実際17q23増幅が見られる乳ガンでは中心体の周りに集まる分子の量が低下している。

以上のことから、中心体が存在しない場合も、分裂糸の中心は形成されるが、TRIM37の発現が増加すると、この分裂中心形成がうまくいかず、ガンは分裂途中で破綻してしまう。したがって、TRIM37の発現量を調べることで、PLK阻害剤の効果を予想することができることになる。

このように、ガンのドライバーとは別に、ガンには特殊なメカニズムが進化している可能性が多く、これが特定されることでより正確なガン治療が可能になる。もっと大規模なプレシジョンメディシンを推進してほしい。

カテゴリ:論文ウォッチ

9月16日 γδT細胞が不安を煽る(9月14日 Nature Immunology オンライン掲載論文)

2020年9月16日
SNSシェア

米国の神経科学者Carla Shatzが、MHCがノックアウトされると神経の可塑性が損なわれることを発表した時は、誰もが驚いたが、免疫反応や炎症が神経発生に関わることは今や誰も疑わなくなった。例えば昨年12月、自然免疫反応でIL-17aがを脳内に誘導すると、社会行動異常を改善できることを示した論文を紹介した(https://aasj.jp/news/watch/11969)。

この時はまだまだ現象論に止まった研究で、面白いというだけで掲載されたのだと思うが、メカニズムにさらに踏み込んだ論文がバージニア大学のグループからNature Immunologyに発表された。タイトルは「Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons (髄膜のγδT細胞はIL-7aシグナルを介して神経細胞に働き不安様の症状を調節する)」だ。

この研究では最初髄膜に存在するリンパ球の種類についてなんども紹介したCyTOFという技術を用いて解析する中で、意外にも末梢にはほとんど存在しないγδTが存在し、しかもCCR6ケモカイン受容体と炎症性サイトカインIL-17発現に関わるRORγ分子を発現し、刺激によりIL-17を分泌する極めてユニークなサブセットであることを発見する。

血管をつなぐパラビオーシスなどを用いて髄膜γδT細胞の発生過程を調べると、生後すぐに脳内に移動した集団がそのまま脳内で居続けるが、成長後に循環を通して置き換わることはない。

このユニークな細胞の機能を調べるため、γδT細胞をノックアウトしたマウスの様々な脳機能を調べると、ノックアウトされたマウスでは活動力が高まり、原則的に不安を感じなくなっていることを発見する。ただ、ノックアウトマウスは全身でγδTが欠損しているので、脳内に抗体を注射してγδTを除去する実験も行い、不安様症状を誘導しているのが髄膜に存在するγδTであることを確認する。

以上の実験からγδT細胞が脳内での不安誘導に関わることがわかったので、次はこの作用をIL-17aが媒介しているのか、脳内への抗IL-17a抗体投与、あるいは脳内の細胞でだけIL-17a遺伝子をノックアウトする方法を用いて実験を行い、IL-17aの作用を抑えることで、不安が解消することを明らかにしている。

次の問題はIL-17aが直接神経細胞に作用してこの効果が得られるのかだが、特に前頭皮質の神経にIL-17受容体が発現していることを確認したあと、神経細胞特異的にIL-17受容体をノックアウトする実験を行い、IL-17受容体が欠損したマウスでは不安症状が抑えられることを示している。

最後にIL-17aの細胞レベルでの作用を調べて、神経興奮の頻度が高まること、活動電位は変化しないことなどから、神経興奮を変化させるというより、興奮に必要神経伝達因子の分泌過程に働き、興奮の閾値を変化させるのではと考察しているが、詳細はいいだろう。

IL-17のソースおよび神経への直接作用など、ようやく頭の整理がついた。IL-17の神経細胞への作用は最初意外な現象と思ってしまうが、妊婦さんの感染や炎症が、妊娠後期でも胎児の脳発達に影響することを考えると、重要な分野に発展する予感がする。

カテゴリ:論文ウォッチ

9月15日 失読症を電流刺激で改善する(9月8日号 Plos Biology 掲載論文)

2020年9月15日
SNSシェア

言葉自体はおそらく5万年ほど前に誕生したと考えられているが、文字になるとずっと遅く、トークンのような原型は別として、4〜5000年前にようやく誕生した(発明されたというのが正しいだろう)。最初から文字を覚えることは簡単ではなく、エジプトやメソポタミアの遺跡に書記の像が多くみられるのも、文字の難しさを物語るのだろう。興味のある方は是非このHPに書いた文字の歴史をお読みいただきたい(https://aasj.jp/news/lifescience-current/11129)。

言葉にせよ文字にせよ、聞いたり読んだりする過程は継時的に並んだ音素の認識から始まる。文字の場合、この並びが平面上の位置に置き換えられているが、それが脳の中で時間に置き換えられ、聞くのと同じように理解していることがわかっている。このことを最も明確に示すのが、失読症の人たちが、聞こえる音素を区別するのが苦手だという現象だ。音素を区別する時に必要な音素と音素の間の時間差は25ms程度だが、面白いことに言葉が聞こえ始めた時から、左聴覚野で、あたかもこの音素間隔に対応するかのように30Hzの脳波(底ガンマ波)が発生することがわかってきた。音素の並びを認識するため脳内の拍子として働いているのではないかと考えられているが(これは総説を読んだ私の理解で間違っているかもしれない)、直接それを証明するのは難しい。ただ間接的な証拠は上がってきており、なかでも音素の区別を聞き取るのが苦手な失読症の方では、この左聴覚野のみにみられる低ガンマ波が低下していることの発見は最も重要な証拠と考えられている。

この意味で今日紹介するジュネーブ大学からの論文は、低ガンマ波の振動が音素の区別に関わることを直接証明した重要な研究で、9月8日号のPlos Biologyに掲載された。タイトルは「Selective enhancement of low-gamma activity by tACS improves phonemic processing and reading accuracy in dyslexia (頭蓋の外から交流電流刺激により底ガンマ波を高めると、失読症のひとの音素の処理と正確に読む能力が高まる)」だ。

この研究では左聴覚野で拍子をとるのに役立っていると考えられる低ガンマ波を、頭皮の外から30Hzの電流を流すことで回復させ、これにより音素の区別能力が改善し、さらに失読症の症状が改善するか調べている。

参加者は、失読症の人15人、正常人15人で、まずこれまで知られていたように、失読症では左聴覚野のみで音素を聴き始めた時に発生する低ガンマ波が低下していることを確認している。

次に、左聴覚野に20分、30Hzの電流を流し、低ガンマ波のレベルを調べると、刺激をやめても30Hzのガンマ波特異的にレベルが戻っている。一方、正常の人では変化は見られない。すなわち、低ガンマ波が低下している場合のみ、電流によりガンマ波の自然発生を回復させられることを示している。

そして、この結果失読症の人の音素を聞き取る能力が回復し、しかも文字を正確に読む能力も回復する。一方、正常人の脳に電流を流しても、能力が高まることは全くない。

以上、短期効果に限って言えば、失読症の人たちの言葉を読んだり聞いたりする能力を高める可能性が示され、これを訓練などと組み合わせる新しい治療法の開発が期待できる。

ただ、このような臨床応用だけでなく、この結果は音を聴き始めた時に脳内の回路から発生する低ガンマ波が、音素の区別に重要であることを直接示した点で、言語や音楽の認識過程を理解する上でも、かなり重要な論文ではないかと思っている。さらに、電流を流して特定の周波数の脳波を変化させる手法の威力にもおどろく。この方法を利用した人間の脳の解析が進むことを期待するが、同時にこのような操作を行うための研究ガイドラインを整備することの必要性も痛感した。

カテゴリ:論文ウォッチ

9月14日 NADのミトコンドリアへの輸送経路(9月9日 Nature オンライン掲載論文)

2020年9月14日
SNSシェア

NAD+は様々な酵素反応に関わる補酵素で、この様々な過程で電子のアクセプタートして使われていることから、細胞全体の活性を調節する通貨のような働きをしている。最近では抗老化分子と知られるSirtuinを活性化する活性を期待して、抗老化サプリとして服用している人すらいるようだ。もちろん、エネルギー代謝には必須の補酵素で、ミトコンドリア内に存在し、TCAサイクルや電子伝達系で補酵素として働くことが知られている。

私の学生時代に戻ったような教科書的な記述から始めたが、私たちが生化学で習った時代から現在まで、驚くことに、哺乳類の細胞がミトコンドリア内にNADを直接輸送する仕組みについては解明されていなかったようだ。今日紹介するペンシルバニア大学からの論文はこのNADトランスポーターをSLC25A51と特定したという研究で9月9日のNatureオンライン版に掲載された。タイトルは「SLC25A51 is a mammalian mitochondrial NAD + transporter (SLC25A51は哺乳動物でNADのミトコンドリアへのトランスポーターだ)」だ。

酵母や植物ではNADのミトコンドリアトランスポーターは特定されており、その相同遺伝子を探す試みが行われていたが、分子特定には至っていないと聞くと、なぜこれほど重要な分子が見つかっていなかったのかと驚く。ただ、代わりのルートは存在するので、哺乳動物はちょっと違うとあまり真剣に探してこなかったのが真相のようだ。

この研究ではミトコンドリアに発現しているトランスポーター機能を持つ分子の中で、機能が特定できていない分子を探すという、一種の消去法でSLC25A51に白羽の矢を立てて、SLC25A51分子のノックダウン実験を行い、ノックダウンによりミトコンドリア内のNAD量が低下することを発見する。データを見ると、低下の程度は中程度なのでNADでなくともNMNなどを介してミトコンドリアに入るルートがあるのだろう。

いずれにせよ、SLC25A51によるNAD直接輸送がなくなると、細胞および分離したミトコンドリアの呼吸機能が低下する。重要なことは、分離したミトコンドリアで見られる呼吸機能の低下は外部からNADを加えても、回復することはない。すなわち、NADがミトコンドリアに輸送されることが重要であることが明らかになった。

あとは本当にSLC25A51がトランスポーターとして働いているのかを、標識したNADなどを用いて確認する実験を行なっているが詳細はいいだろう。要するに、長くわからなかった(というより放って置かれた)NADをミトコンドリアに輸送する分子が特定したことがこの論文のすべてだろう。

おそらく、NADの抗老化作用への期待が、これまで当たり前として放置されてきた様々な挑戦の後押しをしているのではと想像している。

カテゴリ:論文ウォッチ

9月13日 PARK7突然変異によるパーキンソン病:遺伝子変異が見つかってもメカニズムはわからない(9月9日号 Science Translational Medicine 掲載論文)

2020年9月13日
SNSシェア

パーキンソン病(PD)の多くは特定の遺伝子変異を見つけることが難しいが、一部のケースで明確な遺伝子変異に起因することがわかっている。中でもよく研究されているのがPINK, PARKINと呼ばれる分子の変異で、変異によりミトコンドリア変性が進んでドーパミン神経が失われると考えられている(http://aasj.jp/news/watch/6449)。

さて、ゲノム解析が診断に利用されるようになり陥りやすい過ちは、遺伝子変異が見つかるとそれで納得してしまうことだ。しかし特定の変異が実際にはどう病気に関わるかは単純ではない。今日紹介するルクセンブルグ大学からの論文はPARKINの一つPARK7のミスセンス変異によりPDが発症するメカニズムを詳しく調べた研究で、突然変異が見つかっても、メカニズムを理解するにはまだ長い道のりがあることがよくわかる研究で、9月9日号のScience Translational Medicineに掲載された。タイトルは「A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson’s disease (患者さんのRNAミススプライシングのモデルの解析からパーキンソン病の新しい治療が発見できる)」だ。

この研究はPARKINファミリーの一つPARK7に存在する64番目のアミノ酸が変化する突然変異がPDを発症するメカニズムを探っている。患者さんの細胞の解析から、この変異の結果、PARK7タンパク質の発現が強く抑制されることがわかり、この変異によりタンパク質が不安定になり、分解されてしまうのだろうと説明されていた。

この研究ではこのアミノ酸変異の元となる遺伝子側(192番目の塩基がGからCに変わる)の変異によって、RNAスプライシングが起こらなくなり、エクソン3が欠損したタンパク質ができることを発見する。とはいえ、それでもスプライス後のRNAからタンパク質は理論上合成されるはずなのに、実際にはPARK7タンパク質自体が存在しない。詳細は省くが、これが3番目のエクソンが欠損することでmRNAの3次構造が変化し、この結果タンパク質の翻訳自体が抑制されることを発見する。この翻訳の抑制は、人間の神経細胞のみならず大腸菌でもみられることから、mRNA自体の問題であることが確認された。

とすると、スプライシングを正常化して、エクソンが欠損しないようにすれば、ミスセンス変異があってもPARK7の機能が維持されるか調べる目的で、small nuclear RNAを導入してスプライシングを正常化する実験を行い、このことを確認する。

スプライシングを正常化させる薬剤は最近開発が進んでおり、kinetinなどは治験に入っている。そこで、インシリコの計算による薬剤探索で発見したphenylbutyric acidとRECTASと呼ばれるkinetin類似化合物を併用して患者さん由来の細胞を処理すると、なんとタンパク質の生産が18%近くまで改善することができ、ドーパミン神経の消失を試験管内ではあるが防げることを示している。

これだけだと特殊な変異に絞った治療法の開発になるが、この研究では明確な遺伝子変異が存在しない孤発性のPD でも、スプライシングミスが起こる変異を持っている確率が高いことを示し、比較的多くのPDを治療するためにスプライシング異常を正常化させる薬剤が使える可能性を示唆している。

診断側から見れば病気と変異の対応で決めざるを得ないが、治療を真剣に考えるならメカニズムを丹念に特定することの重要性がよくわかる論文だった。

カテゴリ:論文ウォッチ

ロックダウンで地震計のノイズが世界中で消えた(9月11日号 Science 掲載論文)

2020年9月12日
SNSシェア

宇宙背景放射という言葉をご存知だろうか?ビッグバンの決定的証拠とされる宇宙の全方向からやってくる弱い光のことだ。専門外なので、このマイクロ波について解説する気は無いが、この発見の経緯は面白い。ベル研究所で高感度アンテナの性能を調べていたところ、微小な連続的ノイズの存在に気づく。ノイズの元は何か、鳩の糞まで調べてもその原因は見つからず、しかもあらゆる方向から届いていることがわかった。最終的に、このノイズこそが宇宙背景放射と呼ばれる天球からの電波であり、決してノイズではないことがわかるのだが、この話は観測にとって何がノイズで、何がシグナルなのかを決めることの難しさを示す有名な物語だ。

地球上は人間であふれている。このため、物理的観測にとっていちばんの難問は、人間活動により生じるノイズだ。結果、天文台は山奥から、今や宇宙にまで場所を移している。そして、今日紹介する論文では、人間の活動が不断に大地を揺らし続けていることが示された。新しいサイエンス誌を開いた時にまず目に飛び込んできた論文で、タイトルには地震というウイルスとは全く関係のない単語がCovid-19と一緒に並んでおり、思わず手に取った。

ベルギー・ブリュッセルを中心に世界の地震研究所が集まって発表した論文のタイトルは「Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures(地球規模の高周波数の地震計ノイズがCovid-19によるロックダウンで静かになった)」だ。

「seismic:地震」と「新型コロナ:Covid-19」という2つの単語を見て興味を惹かれない人はいないだろう。新型コロナウイルス感染症と地震の間にどんな関係があるのか? しかしタイトルを読んでしまえば全ての疑問は解消する。要するに、Covid-19によるロックダウンが世界規模で起こったことで、地震計で検知されるノイズが減ったということだ。

この研究では世界に散らばる268機の地震計記録を集めて、実際の地震波とは異なる高周波の振動だけを取り出し、2019年12月から2020年5月まで分析したものだ。驚くことに、新型コロナウイルス感染とは関係なく、高周波振動記録は、各地での人間活動を反映するのがよくわかる。すなわち、クリスマスから新年にかけて、世界中で振動が減少する。(オープンアクセスなのでこのチャートを見ることができる:https://science.sciencemag.org/content/369/6509/1338 )。

ただ、ロックダウンによる影響はクリスマス休暇に見られる程度で済まないことがチャートからわかる。1月の終わり中国でロックダウンが始まると、高周波の振動はほとんど止まる。そして3月に入るとイタリアから急速に振動が停止していき5月まで続いている。

場所によっては、振動が続いているのも観察される。チャートを眺めて得た個人的印象なので正式な結論とは考えないでほしいが、一般的にヨーロッパでは振動の低下が激しく、米国では振動が残る傾向がある。我が東京でも、完全には振動は止まっていない。今後このデータと人出や経済活動データを照らし合わせれば、地震計で人間の活動を定量することがわかるだろう。とすると、ロックダウン解除による人間活動の再開も、地震計の記録から定量できると思う。

要するに、人間の活動が常に大地を揺らしているのだ。この影響が到達する距離など詳しく調べているが詳細は省く。この揺れが低下した半年、これまで望んでも望めなかった、地殻活動としての高周波の記録が可能になったと思う。その意味で、Covid-19は地震学に大きな貢献を果たすかもしれない。

9月12日 細胞内でのコロナウイルス動態を可視化する(9月12日 Science 掲載論文)

2020年9月12日
SNSシェア

多くの医学生は電子顕微鏡で捕らえられた月面着陸船の様なファージウイルスの精妙な構造を目にして、感銘を受けたはずだ。それほど実際に目で見ることは重要だ。今回の新型コロナウイルス感染症でも、ウイルスがコードする多くのタンパク質の構造が、クライオ電子顕微鏡などを用いて詳しく解析され、薬剤の開発を後押ししている。

今日紹介するオランダ ライデン大学からの論文はdouble membrane vesicle(DMV)と呼ばれる小胞構造が、ウイルスの増殖のための隠れ家として機能できるのかについて電子顕微鏡でひたすら観察した研究で、9月12日号のScienceに掲載された。タイトルは「A molecular pore spans the double membrane of the coronavirus replication organelle (コロナウイルス増殖オルガネラの二重膜を貫く穴の構造)」だ。

コロナウイルスRNAは、ウイルスゲノムとしては大きく、自然免疫に検知されることなく増殖するための複雑な機構を備えている。中でも重要なのが細胞内の小胞体を構成し直して形成する小胞構造DMVで、これは増殖オルガネラ(RO)と呼ばれる。これにより、ウイルスRNAは自然免疫を刺激することなく、自由に増殖できるが、いつかはROから外に出て、新しいウイルス粒子にパッケージされたり、ホストのリボゾームに結合して翻訳に関わる必要がある。

この研究では新型コロナウイルスではなく、安全に研究できるネズミ肝炎コロナウイルスが感染した細胞のウイルス増殖オルガネラを、クライオ電子顕微鏡でひたすら観察している。新型コロナ感染細胞も基本的には同じと考えている。見えたものを言葉で表すのは難しいが、見て面白いと思ったものを以下に列挙しよう (オープンアクセスなので実際の写真も見ることができます:https://science.sciencemag.org/content/369/6509/1395)。

  • まずROにつながった紐の様な小胞体が見えることから、小胞体が再構成してできたのがROであることがわかる。
  • 期待通りROの中には糸状のRNAが詰まっている。そして一部は長いdouble strand RNAとして存在している。
  • ROには複数の二重膜を貫く分子複合体が存在し、中央に細孔を形成して細胞質とつながっている。
  • この分子複合体の正体はnsp3で6個の分子で一つの細孔を形成している。
  • この複合体に直接おそらく複製複合体と思われる分子が結合している。
  • 細胞質側に突き出た腕にもおそらくNタンパク質と思われる分子との結合が見られる。すなわち、ROから出てきた+RNAにNタンパク質はここで結合する。
  • Nタンパク質が結合したRNAは細胞質を拡散してスパイク分子やMタンパク質が結合した小胞体に結合、ウイルス粒子を作る。

以上文字で表現したことが全て写真で示されているので、ぜひ見てほしいと思う。もちろん見ただけでは、ウイルスのプラス鎖とマイナス鎖が如何区別されるのかや、他のnsp4, nsp6がRO形成に如何関わるかなど、まだまだ見たい部分もあるが、時間の問題だろう。

素人なのでこれらの像を撮影するのがどれほど難しいか想像がつかないが、時間がかかっていることを考えると、本当は大変な作業だったのだろう。しかし、見ることの重要性がよくわかる研究だった。

カテゴリ:論文ウォッチ

9月11 日 ウイルスでウイルスを制す (9月4日 The Lancet Microbiome 掲載論文)

2020年9月11日
SNSシェア

マスメディアではこの冬は新型コロナウイルス感染と、インフルエンザ感染が入り乱れて恐ろしい話になるのではと恐怖が煽られている。ただ、ウイルスの同時流行についてはあまりデータがない(これが恐怖の元になる)。一方、一つのウイルスに感染すると、自然免疫が誘導されるために、他のウイルスには感染しづらくなる現象(ウイルス干渉と呼ばれる)については、多くの報告がある。実際に、新型コロナウイルスとインフルエンザや他のウイルスとの間でウイルス干渉が見られるのかは重要な問題で、鼻粘膜からのウイルスサンプル採取が行われる今年は、研究の大きなチャンスになると思う。どこかが主導して集められたサンプルについて、新型コロナやインフルエンザにとどまらず様々なウイルスについてPCRを行うことで、今後の予防対策にとって貴重なデータが得られることは間違いがない。

今日紹介するイェール大学からの論文は疫学レベル、試験管レベルで、普通の風邪の原因であるライノウイルスとインフルエンザウイルスが干渉するかどうか調べた研究で、The Lancet Microbiomeにオンライン掲載された。タイトルは「Interference between rhinovirus and influenza A virus: a clinical data analysis and experimental infection study (ライノウイルスのインフルエンザウイルスの干渉:臨床データと実験的感染研究)」だ。

イェール大学では2016年からウイルス干渉現象に取り組んでおり、インフルエンザウイルスとライノウイルスを含む10種類のウイルスについて感染の存在を確認し続けている。インフルエンザの抗原検査は行われても、ウイルスのPCR検査が臨床で行われることは稀なので、このデータは貴重だ。

結果だが、予想されたとはいえ極めて明確で、、ライノウイルスは年中続いているが、それでも1〜2月には感染者数は減る。そしてインフルエンザウイルスはこの間隙を狙うかの様にピークがくる。すなわちウイルス干渉現象が見られる。

ここのデータを詳しく見て、実際に一人の患者さんで複数のウイルス感染が見られるか調べると、複数のウイルスにかかることはあるが、理論値よりかなり低い。ライノウイルスと、インフルエンザAとの関係で見ると、理論値の1/5に抑えられている。

そこで今度はヒト培養気管上皮への感染実験を行い、ライノウイルスを感染させて3日後の気管上皮ではインフルエンザウイルスの増殖が抑えられていること、そして感染抑制がライノウイルス感染による自然免疫活性化と1型インターフェロン産生によることを示している。

結果はこれだけで、おそらくこれまでのウイルス干渉研究の再確認研究と言えるかもしれないが、新型コロナ感染が続く今、新鮮に感じる。もちろんライノウイルスは非エンベロープ型で、インフルエンザウイルスはエンベロープ型なので、両者に見られた関係が、インフルエンザと新型コロナで見られるのか、予想できない。また、新型コロナウイルスが持つ様々なインターフェロンを逃れる仕組みがウイルス干渉に抵抗力を持たせる可能性もある。

いずれにせよ、この問題を日本人で調べる最大のチャンスがこれから冬にかけてやってくる。このチャンスを生かして、日本人がどの様なウイルス気道感染にさらされるのか、コホート研究を大至急始めてほしい。その結果、ウイルスでウイルスを制する思いも掛けない予防法が開発できるかもしれない?

カテゴリ:論文ウォッチ

9月10日 もう一つの新型コロナウイルス感染阻害薬(9月4日号 Science 掲載論文)

2020年9月10日
SNSシェア

新型コロナウイルスの感染阻害活性のあるモノクローナル抗体薬の開発が急速に進んでいることについて先週紹介したが(https://aasj.jp/news/watch/13811)、可溶性のACE2をウイルススパイクに結合させ、細胞状のスパイクとの結合を阻害する方法も早くから開発が試みられている。

元々細胞膜上に存在する受容体を、遺伝子操作で可溶性の受容体へ変換し、それを抗体の代わりに阻害剤として用いる方法はすでにいくつかの分野で実現している。我が国で最もヒットしているのが加齢黄斑変性症の血管新生を抑えるバイエル薬品のVEGF受容体を可溶化した製品(アイリーア)で、抗体治療(ルセンティスなど)に伍して広く利用されている。

ただACE2を可溶化して用いる場合の問題は、可溶性VEGF受容体とは異なり、これ自体にアンジオテンシンIIを分解する活性があり、血圧を下げる可能性がある。このため、可溶性のACE2を用いた治療は治験にまでこぎつけていない。

今日紹介するイリノイ大学からの論文は、可溶性のACE2も場合によれば利用できるかもしれないことを示す研究で9月4日号のScienceに掲載された。タイトルは「Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2 (ヒトACE2の新型コロナウイルス・スパイクタンパク質への結合性を高める様に操作する)」だ。

タンパク質のアミノ酸配列を系統的に変化させて、機能的変化を調べるdeep mutagenesis と呼ばれる手法については、スパイクタンパク質の解析に関して紹介したが(https://aasj.jp/news/watch/13811 )、この研究では逆にACE2にこの手法適用して、スパイクタンパク質に対する親和性を高めることができないか調べている。

もちろん多くの変異体を解析するという膨大な仕事が必要になるが、最終的に変異していないACEと同じ、あるいは少し高い収率で生産でき、しかも高い親和性を持つ変異体を特定することに成功している。

数値でいうと、元々のACE2はスパイクタンパク質に乖離係数で22nMだが、新しい変異体ACE2vはなんと0.6nMという値だ。すなわち、少ない濃度で細胞上のACE2とスパイクタンパク質の結合を抑制することができる。

さらに回復患者さんに存在する中和抗体と比べても、スパイクへの結合を高い親和性で競合することから、モノクローナル抗体薬と比較しても良い成績が得られる可能性が高い。しかも、新型コロナだけでなく、SARSウイルスの感染も同じ親和性で抑制することができる。

最後に問題になるのは、ACE2のアンジオテンシンII分解作用だが、確かに活性はあるが、正常のACE2と比べるとかなり低下している。

以上の結果から、ルセンティス対アイリーアのように、抗体薬に伍して利用される抗ウイルス薬に発展する可能性はある。別に私が肩を持つ必要はないのだが、低いレベルで残ったアンジオテンシンII分解活性により、病巣の血管収縮などが少し改善されたりすると、ひょっとしたらブレークする可能性もある。

いずれにせよ、これほどの膨大な実験が半年程度で論文になってくること自体が驚きだが、ぜひモノクローナル抗体と競争してほしいと思う。

カテゴリ:論文ウォッチ

9月9日 アリと細菌の共生に向けたボディープランの再構成(9月2日 Nature オンライン掲載論文)

2020年9月9日
SNSシェア

私たちも腸内細菌叢と共存しているといえば言えるが、細菌叢のために体の体制を変化させているわけではない。というのも、発生は細菌叢とは無関係に、原則として無菌環境で起こり、生後外界から細菌叢が移植される。従って、特定の細菌だけが腸内に住み着けるというわけではない。

これに比べると昆虫で見られる細菌との共生は、細菌も昆虫も一体化して発生することで常に共生関係が成立できる様に発生過程を変化させるレベルに達しているものが多く、このブログでも様々な昆虫を紹介してきた。

今日紹介するカナダのマクギル大学からの論文は大工アリとして知られるオオアリの一種が、腸細胞内で共生しているバクテリアブロクマンとの共生を実現するためにどの様に進化したかを調べた面白い研究で9月2日Natureにオンライン掲載された。タイトルは「Origin and elaboration of a major evolutionary transition in individuality (一つの個体として一体化した共生への転換の起源と仕組み)」だ」。

タイトルをかなり意訳したが、individualityをそのまま個性と訳してしまうと誤解を招くと思ったからで、実際にはバクテリアとアリが一つの個体に一体化していることを指しているのだと思う。

この種では、生まれた時から腸内細胞だけにブロクマンが共生してアミノ酸を供給している。そのために、発生過程で、卵の中のバクテリアを腸の細胞だけにもう一度限局させるよう、発生過程を変化させる必要がある。

この研究では共生を選んだ大工アリでは、普通、卵の後方germ plasmaに限局して存在する生殖細胞決定に関わる遺伝子セットが、卵の前後に散らばる4領域に発現しているという発見から始まっている。

これらgerm plasmaの遺伝子は卵の形成過程で母親から伝達される遺伝子なので、4箇所に分かれた生殖細胞決定遺伝子が共生のためのボディープラン形成に関わると考え、まずそれぞれの領域が最終的にどの組織になるか調べ、zone 1とzone4がバクテリアが共生する腸細胞に、zone2が生殖細胞に、そしてzone3が胚の後方領域に分化することを確認する。

次に、この体制の変化に、腸の形成に関わるホメオボックス遺伝子abdAとUbxが関わると読んで、各zoneでの発現を調べ、abdAがzone1,3に、Ubxが全てのzoneに発現していることを確認する。そして、これらの遺伝子の機能をノックダウンで抑える実験から、これらの分子は生殖決定に関わる遺伝子を調節して、共生のための体制づくりに関わっていることを明らかにしている。

そして抗生物質を投与する実験で、共生細菌が除去されると、本来生殖細胞が発生するzone1でabdAとtudorの発現が抑えられることから、それぞれのzone形成は大工アリ独特に獲得した構造だが、それに細菌が共生する様になりさらに体の体制が共生に都合のいい様に変化させられる様になったことを示している。ただ、バクテリアのどの分子がこの変化を誘導するのかについては特定できていない。

あとは、大工アリの系統樹から、新しい体の体制の進化について推察して、新しい体制はバクテリアとは無関係に進化し、その時germ plasmaの遺伝子を異なる領域に局在させる機構の獲得が重要な役割を演じていること、そしてこの新しい体制が細菌との共生で更に深まり、一体として発生する新しい個性が誕生したというシナリオを示している。

個体とはなにか?昆虫から学ぶことは多い。

カテゴリ:論文ウォッチ
2024年11月
 123
45678910
11121314151617
18192021222324
252627282930