2021年6月11日
新型コロナ重症化リスクの最大の要因は老化で、昨日までの死者の数を見ると、まずほとんどが60歳以上で、60歳以下の死者は全体の5%に満たない。厚労省のデータだが、10代では今も死者0になっている。
この差を単純に免疫システムの違いで片付けることは難しく、また重症化から死亡に至る過程にサイトカインストームや線維化があることを考えると、当然、老化細胞の増加による慢性炎症が高齢者の死亡の背景にあるのではないかと想像できる。ただ、covid-19とsenolyticsで検索をかけても、数えるぐらいの論文がヒットするだけだった。
そこにミネソタ大学とメイヨークリニックから、動物実験レベルだがsenolyticsにより、マウスコロナウイルスに対する抵抗性を高めるという論文が6月8日Scienceにオンライン出版された。タイトルは「Senolytics reduce coronavirus-related mortality in old mice(老化細胞を除去するsenolyticsは老化マウスのコロナウイルス関連死を減少させる)」だ。
読んでみると、そのままCovid-19に適用するためにはいろいろ問題がある論文で、紹介しようかどうか迷ったが、一度は検討する価値がある可能性なので、判断は読者に委ねるとして、紹介することにした。
放射線照射モデルでの老化細胞がLPS刺激に対して高いレベルのサイトカイン分泌を示すことを確認した上で、腎臓内皮細胞を新型コロナウイルスのスパイクタンパク質S1で刺激すると、同じように老化細胞のみ強いサイトカイン合成が見られることを示している。
この実験では、ウイルス自体の代わりにS1で細胞を刺激している。たしかに、S1が自然免疫を刺激するという話はあるが、ウイルス自体を用いないと、参考にならない。というのも、コロナウイルスはタイプ1インターフェロンを抑える様々な仕組みを持っており、その上で誘導されるサイトカインストームを再現する場合は、やはりウイルス感染実験しかないように思う。
これで細胞レベルの実験は終わり、今度は一般の細菌叢に対する老化マウスの反応を調べている。この実験もユニークで、ペットショップから購入した一般環境で飼育されたマウスを1週間飼育することで汚された床敷きに、SPFマウスを晒して、感染を起こさせる実験を行なっている。驚くことに、若いマウスではSPFで飼われていても汚い環境に適応できるが、老化マウスは2週間以内に全例死亡する。そして、期待通り様々なサイトカインの発現が上昇している。私も論文はかなり読んでいるが、床敷で感染させるという実験は初めてだ。おそらくレフリーに指摘されたのだろう、マウスに感染するβコロナウイルスの感染実験でも同じことが起こることを示している。しかし、そうなら最初から汚い環境に晒すという複雑な実験をやめて、コロナウイルス感染に進めばよかったのにと思うのだが、実際には汚いマウスの床敷きがコロナウイルス感染モデルになると考えているようで、床敷きに晒すことで、マウスコロナウイルス感染が起こっていることを確認している。
最後に、この床敷感染実験によるマウスの死亡数が、サーチュインの活性に関わるとして知られているfisetin, さらには遺伝的senolyticsの系(p21が発現している細胞を薬剤で除去するシステム)。そして現在senolytics薬剤として用いられるダサニティブ+ケルセチンのコンビで、抑制することができることを示している。
以上が結果で、これでsenolyticsによりコロナ感染死亡を防げると結論している。ただ、Covid-19抑制に関わるsenolyticsを考えるとき、サイトカインストームから肺線維症が進行する過程を抑えられるのではと期待するが、読んでみてこの過程は無視されているように思える。すなわちこの研究では、ウイルスに対する免疫システムが老化で低下しており、これをsenolyticsで抑えるという話になっている。実際老化マウスではウイルスに対する抗体の産生が落ちており、senolyticsで抗体が回復している。また感染実験でも、感染量が増えると、病気の進行は遅らせても、マウスは最終的に死亡することから、肺線維症へスイッチするような病態を見ているようには思えない。
以上、紹介はしたものの、これをそのまま人間のcovid-19の重症化モデルに役立つとは到底思えず、よくレフリーも通したなと言う印象だが、senolyticsの効果については、もう少しわかりやすいモデルで、検証を続けることは重要だと思う。
2021年6月10日
最近のスマートウォッチでは心電図から酸素飽和度まで測定可能になっているが、もしこのレベルの異常が見つかれば、即、医師の診察室へ直行する必要がある。どの程度の数の人が、スマートウォッチで異常が出たからと医師を訪れているのか興味がある。実際には、年に一度の検診と比べたとき、毎日心電図を取る意味はそれほどないように個人的には思う。
このように、どうしても医学ツールとしてセンサーを発展させようとする試みがある一方、ほとんどのスマートウォッチでは、様々なセンサーを使って日々の体の活動を記録することができる。こちらの方は、定期検診では得られないデータで、ウェアラブルセンサーが普及して初めて可能になった。
今日紹介するスタンフォード大学からの論文は、個人の活動性を調べたウェアラブルセンサーデータを病院での検査データと相関させるための機械学習開発で5月24日Nature Medicineにオンライン掲載された。タイトルは「Wearable sensors enable personalized predictions of clinical laboratory measurements(ウェアラブルセンサーを用いると病院での検査結果を個人レベルで予想できる)」だ。
個人的には、ウェアラブルセンサーは診断ツールとしての機能を磨くのではなく、個人の活動を記録し蓄積し、それを利用できるようにする方向で開発を進めて欲しいと思うが、この研究ではアップルウォッチ ではなく、Intel Basisを用いて、心拍数、運動、体温、そして皮膚電位の4項目について持続的に計測し、同時に対象者に月一回のペースで血液検査を行い、それぞれのデータに相関があるか調べている。
月一回の検査では、体温や心拍数も調べるが、毎日のデータの精度は圧倒的に高く、例えば日内周期はウェアラブルセンサーでないと拾えない。すなわち、アクティビティーと時間から推定される、いつどのような状況で測定したかも含めると、この4つの指標はなんと153のデジタルデータになる。
次にこれを血液検査と相関させると、それぞれの血液検査結果と相関するデジタルデータを抽出することができる。血液電解質を除くと、ほとんどの検査とデジタルアクティビティーを相関させることができる。
面白いのは、最も相関が高いのがヘマトクリットや、赤血球数などの血算データで、おそらく何らかの感染症や炎症を反映しているのだろう。残念ながら、この研究では病名までは対応させていない。
最後に、それぞれの検査データ値を、集団レベルの正常値に合わせるのではなく、月一で検査した平均値を用いて、そこからの変化と相関させると、より高い相関が見られ、この方法だと、血中電解質でも強い相関が見られるという結果だ。
以上、機械学習を磨けば、精度の高いアクティビティー記録がいかに役に立つかを示した研究だと思う。
私もスマートウォッチを愛用しているが、問題は機械学習により診断し、それを個人にフィードバックしたり、医療で用いたりするための基盤が必要になる。すなわち、医療の領域に入るためのregulationなどの議論が必要になる。そろそろ、マーケティングの目的ではなく、本当に医療に参入するための議論を始めてもいいように思う。
2021年6月9日
クライオ電顕のおかげで、新型コロナウイルス(CoV2)の様々な機能タンパク質の構造解析は急速に進んだ。この結果と思うが、ウイルス分子を標的にした薬剤開発も、単純なハイスループットスクリーニングではなく、タンパク質の構造から化合物をデザインする方向性がうまくいっているように思う。例えば、以前紹介したCoV2メインプロテアーゼの阻害剤のように、臨床治験にまで進んだファイザー社の化合物は、3次元構造を元に小さなユニットを組み合わせて設計された阻害剤だ(https://aasj.jp/news/watch/15255 )。
この辺になると、私のようなアマチュアには到底計り知れないプロのセンスが必要になると思う。このようにCoV2、特にRNA合成酵素を見る眼差しのプロとアマの差をはっきり示す論文が米国NIHから6月3日Scienceにオンライン掲載された。タイトルは「Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets (SARS-CoV2のRNA 依存性RNAポリメラーゼ中のFe-Sコファクターは抗ウイルス剤の標的になりうる)」だ。
現在、直接ウイルスに働きかける薬剤として認可されているのはRNA依存性RNAポリメラーゼ(RdRp)の作用でウイルスRNAに取り込まれ不安定化させるレムデシビルだが、間違いなくこのおかげで多くの命が救われた薬剤だ。もちろんnsp12/nsp7/nsp8が複合体を形成したRdRbの構造とレムデシビルの関係も解読されており、この薬剤の有効性を科学的にバックアップしている。
私のようなアマチュアは、この構造解析になるほどと感心し納得するが、プロにとっては気に掛かる点があるらしい。RdRpについてのほとんどの構造解析で、CoVで保存された箇所に亜鉛が結合していることが示されている。亜鉛との結合が必須のタンパク質など数え切れないぐらい存在するので、アマチュアはなるほどと納得するが、プロが見ると、実際には亜鉛の代わりに鉄と硫黄からなるFe-Sコファクターが同じ場所で活性に関わっているのではと疑ってみるようだ。
このグループは、タンパク質がFe-Sコファクターと結合しているかどうかを予測するソフトを開発しており、これを用いてnsp12を解析したところ、これまでFe-S合成に関わるとされてきたHSC20との結合部位にFe-Sが存在する可能性が示唆された。
次に鉄の同位体を用いて、Feがnsp12と結合していること、また酸化環境の中で精製したnsp12ではこの結合が失われていることを示している。そして、無酸素状態で精製したRdRp複合体にはFe-Sコファクターが結合しており、有酸素化で普通に生成したRdRpより強くRNAに結合することを示している。
これはRdRp複合体とヘリカーゼnsp13との結合がFe-Sコファクターにより安定化されることで、結論としてRdRpの活性は、亜鉛との結合でも維持されるが、高い活性、特にヘリカーゼと協調しながら複製するときにはFe-Sコファクターが必要であることを示している。
Fe-Sとタンパク質の結合が、活性酸素のスキャべんジャーとして開発されたTEMPOLにより阻害されることがわかっているので、最後にウイルス感染細胞をTEMPOLで処理すると、たしかにnsp12からFe-Sが遊離していること、そして400μMという少し高い濃度ではあるが、細胞中でのウイルス複製を抑えることを明らかにしている。
基本的なコファクターは様々な分子と結合しており、薬剤として使うと問題があるのではと思うが、この濃度では目立った問題は細胞レベルでは出てこないようだ。さらに、レムデシビルと相乗効果もあるようで、ひょっとしたら病院レベルで利用される薬剤になるかもしれない。
以上、論文だけからは本当に治療薬として使われるかどうかははっきりしないと思うが、しかしプロの目で見れば、これまでのデータから新しい創薬標的が見えるという典型例で、感心した。
2021年6月8日
Konrad BaslerがMycを導入した細胞が他の細胞との増殖競争で勝者になることを示したのは20年近く前だが、最近細胞競合はホットなトピックスになっている。これは競合に関わる分子が明らかにされ始めたためで、例えば、皮膚上皮のヘミデスモゾーム分子Col17Aの発現量に依存するニッチの取り合いから勝者と敗者が決まるという西村さんたちの研究は、老化の細胞動態を見事に説明した。
今日紹介する英国のCancer Research UK Beatson研究所からの論文は、腸の発ガンに関わるApc分子の欠損により、他の細胞を抑えて欠損細胞増殖が高まる競合に、Wnt分子を脱アシル化する酵素Notumが関わることを示した論文で、6月2日Natureにオンライン出版された。タイトルは「NOTUM from Apc-mutant cells biases clonal competition to initiate cancer (Apc変異細胞から分泌されるNotumはクローン間の競合に影響して発ガン過程を開始させる)」だ。
Side-by-sideでオランダ ガン研究所から、ほぼ同じ内容の論文が発表されている。ただ、Notumをより強調していたので、Cancer Research UKの論文に焦点を当てた。
Apcがβカテニンを分解してWntシグナルを高め腸上皮の異常増殖に関わることは教科書マターだが、この研究ではさらにApcがノックアウトされることで、他の分子機構が働き、Apc欠損細胞が競合に勝利すると考え、Apc欠損が引き金になって腫瘍化した細胞で発現しているmRNAを、正常小腸と比べ、最も大きな発現変化が見られた分子としてNotumを特定する。
Notumは既にWntの脱アシル化を介してWntシグナルを抑えることが知られており、正常細胞のWntシグナルを抑えるというドンピシャの分子が特定された。後は、Notumが正常幹細胞を抑えるかどうか、試験管内の上皮オルガノイド形成、およびNotumの発現を生体内で操作する実験を行い、Apc欠損細胞がNotum分泌を介してまわりのWnt依存性幹細胞の増殖を抑え、その結果細胞競合に勝利することを示している。
このとき、他のWnt阻害剤を操作しても影響はなく、腸上皮ではNotumだけがこの作用を持つことも確認している。
ショウジョウバエでは、Notumが周りの細胞を細胞死に追いやることが知られているが、マウス腸上皮ではメカニズムが異なり、幹細胞の分化を誘導することで増殖を抑え、最終的にApc欠損細胞が競合に勝利する。
最後に、ではApc分子欠損から始まる大腸ガン発生にNotumが関わるかを調べるため、Notum欠損マウスをApc-Minマウスに掛け合わせると、Notum欠損マウスでは発ガンが強く抑えられることを確認する。すなわち、Notum分泌により周りの細胞の増殖を抑えないと、前ガン細胞もガンへは発展できないことを示している。そして、Notumの酵素活性の阻害剤を加える実験で、Apc欠損細胞が細胞競合に勝利するのを抑えられることを示している。
以上、細胞競合というより、正常細胞による異常増殖抑止機構が常に働いていることの証明だが、Wnt経路の異常による発ガンにのみ有効なので、おそらく他の細胞競合メカニズムも存在するのではと想像する。
2021年6月7日
メカニズムは完全に解明されたわけではないが、先日紹介した若年性ALSは、スフィンゴリピッド合成が上昇したことで、おそらくインフラマゾームなどが関与する自然炎症が起こり、神経変性が起こると想像できる。というのも、よく似た神経変性疾患、adrenoleukodystrophy (X-ALD)が存在するからだ。X-ALDはペリオキソゾーム膜にあって、極めて長い脂肪酸を輸送するABCトランスポーター遺伝子の変異により起こる病気で、通常ゆっくりと進行している途中で、何らかのヒットがあると脳全体制御不能な炎症がおこり、脱ミエリン化が誘導され、急速に死に至る病気だ。現在のところ、血液幹細胞移植で炎症を軽減する試みがあるが、根本的な治療ではない。
最近この病気を、武田薬品によってインシュリン抵抗性を改善するために開発されたPPARγ活性化剤ピオグリタゾンの誘導剤で治療する試みが行われている。今日紹介するスペインの製薬企業Minoryxからの論文は、ピオグリタゾンの脳内移行を高めた誘導体レリグリタゾンで、ALDだけでなく、炎症が関わる脳の変性疾患を抑えられないか調べた前臨床研究で、6月2日号のScience Translational Medicineに掲載された。タイトルは「The brain penetrant PPARγ agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy(脳内に移行するPPARγ活性化剤レリグリタゾンはX-染色体連鎖adrenoleukodystrophyのモデルの様々な経路を正常化できる)」だ。
PPARγは複数の内因性のリガンドにより活性化される転写因子で、代謝からガンや炎症まで多くの細胞機能に関わっている。この研究では、試験管内で炭素が26以上並んだ脂肪酸に暴露したときに起こる細胞障害が、レリグリタゾン添加により、活性酸素産生が低下し、NFkB経路の活動が抑えられ、またインフラマゾーム経路の最終産物IL1β分泌も抑制することを示している。すなわち、細胞レベルでもレリグリタゾンが変性を抑えることを示している。
次にマウスモデルを用いて効果を調べると、神経細胞だけでなく、炎症細胞自体の転写も変化させることで、炎症も強く抑えることを示している。さらに面白いことに、血液単球の血管内皮への接着も強く抑制できることも示している。重要なことは、炎症がなくとも、レリグリタゾン自体が十分脳血管関門を超えて、脳内で作用することで、抗炎症作用を含む様々な効果を期待でき、ALDのみならず、他の病気の治療にも利用できる可能性が出てきた。
これを確かめるため、自己免疫反応による多発性硬化症モデルマウスに投与すると、脱髄を強く抑え、症状も改善できることを示している。
すなわち、マウスモデルを用いて、PPARγ活性化により、神経自体の変性のみならず、脳内炎症全体を抑えることが示された。
これを人間で確かめる意味で、患者さんから提供されたマクロファージのTNF産生が、レリグリタゾンで軽減すること、また血管内皮細胞株への接着も低下することなどが示されている。
最後に健常人を用いた第1相試験を行い、レリグリタゾンが脳内に移行し、髄液の炎症性サイトカインを低下させ、血中のアディポネクチンを上昇させる効果があることを確認している。
実際には、レリグリタゾンの第2相以降の治験は現在進行中で、結果が分かり次第発表されるだろう。ただ、ALDでの結果だけでなく、炎症が病気を悪化させることがわかっているほとんどの変性性疾患、例えばALSやアルツハイマー病などにも今後使われていくような予感がしている。おそらく一般の人にはわかりにくい論文紹介だったと思うが、神経変性疾患共通の問題を解決してくれるのではと期待している。
2021年6月6日
胎児へのウイルス侵入は防げない場合が多いとはいえ、細菌に関しては、少なくとも医学部では、胎児は原則無菌状態で保たれていると教えていると思う。ただこれまで何度も何度も、よく調べれば少量とはいえ細菌が存在すること、あるいは胎盤を通して細菌が胎児に侵入することを示唆する論文は数多く出版されている。とはいえ、結局量の問題で、ほとんど意味のない現象として扱われてきたと思う。
これに対して今日紹介するシンガポールA*Starや英国ケンブリッジ大学を中心とする国際チームからの論文は、細菌の存在とともに、それに対する免疫反応の存在を示し、確実に胎児中の細菌が免疫システムに何らかの影響を及ぼしていることを示した研究で、6月24日号のCellに掲載される。タイトルは「Microbial exposure during early human development primes fetal immune cells(人間の初期発生過程での細菌への暴露は胎児免疫システムを感作する)」だ。
研究は、胎児に細菌が存在し、それ自身意味があることを検証するため、あらゆることを行なっている。
まず妊娠12-22週胎児の様々な臓器から血液細胞を回収し、CytoFと呼ばれる技術を用いて、存在する血液集団を解析し、大人に見られるほとんどのリンパ球が、胸腺やリンパ節だけでなく、末梢の組織にも存在すること、そして何より抗原に出会った経験のあるメモリー細胞が一定程度存在することを明らかにしている。すなわち、胎児の免疫系は何らかの刺激を持続的に受けていることを示した。
この刺激の元が細菌であることを示すために、様々な組織で16S解析を行い、量的には少ないとはいえ、組織ごとに違った細菌叢が存在することを確認する。
これまでの細菌検査はほとんどDNA解析に頼っていたが、この研究ではさらに進んで、各組織から細菌培養を行い、増殖してきた細菌の種類も特定している。さらに、胎児組織の走査電顕および、in situハイブリダイゼーションを用いて、組織学的にも細菌が存在することを確認している。
そして、この表と裏のデータを統合するため、組織から集めてきた樹状細胞に、高い頻度で存在している細菌を取り込ませ、同じ胎児から調整したT細胞を刺激し、細菌に対する免疫反応が起こること、また免疫記憶が成立することを示している。
以上が結果で、要するに表裏徹底的に実験を行い、胎児は無菌的ではなく、おそらく胎盤を通ってきた細菌が各組織で小さな細菌叢を形成し、胎児の免疫を刺激していることを示している。これが生涯にわたってどんな効果を及ぼすのか、面白い課題だが、さらに実験が難しい課題だ。
2021年6月5日
若年性のALSは極めて稀だが、我が国でも報告は散在する。ただ、明確な遺伝性が認められないケースでは、ほとんど病気のメカニズムが解明されることはなかった。
今日紹介する米国NIHを中心とするチームから発表された論文は、セリンパルミトイルトランスフェラーゼ(SPT)の第2エクソンの変異により誘発された若年性ALSの解析で、代謝経路の異常でALSが起こるなど、これまでにない特徴があることから、ALS全体の理解にも今後大きく貢献する可能性がある研究だ。タイトルは「Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis(過剰なスフィンゴリピッド合成により誘導される児童期の筋萎縮性側索硬化症)」で、5月31日Nature Medicineにオンライン掲載された。
まずこの研究に参加した期間で、若年期に発症したことが明確なALSを選び、ゲノム検査を行い、SPT遺伝子第2エクソンに何らかの変異を持つ、7家族11例を特定することに成功している。
親兄弟のゲノム検査と比べた時、6例は、両親には全く変異が認められないde novoの変異であることが確認されたが、1例は父親および、生まれてきた全ての子供が同じ変異を持っていた。驚くことに、全ての子供でALSが発症したにもかかわらず、父親は軽い神経症状があるだけで、正常の生活を送っている。また、この家族に見られた同じ変異は、他の2症例でも見られている。
このように、特定された遺伝子はパルミトイルCoAとセリンからセラミドが合成される代謝経路の最初の段階でスフィンガニンが合成される経路で、すでに同じ遺伝子の他のエクソンの変異によりhereditary sensory and autonomic neuropathy type 1と呼ばれる家族性疾患が起こることが知られており、この場合同じ酵素の活性の変化により、セリンの代わりにアラニンを使うため、セラミド形成が低下することが知られている。
ただ、ALSの変異では、本来の経路でのスフィンガニン合成自体が上昇していることから、おそらく酵素活性が高まる変異だろうと推測された。この点を探るため、iPSの遺伝子をクリスパーで編集し、同じ突然変異を持つ運動神経細胞を用いてSPT分子の活性を調べ、最終産物セラミドによって起こるフィードバック機構に関わるORMDL分子との結合が変異により欠損し、スフィンガニン合成調節機構が外れて、過剰合成が起こっていることが明らかになった。
この結果は、もしSPTの酵素活性を全般的に低下させることができれば、遺伝子変異をそのままに、治療可能であることを示唆しており、この研究でも患者さんのファイブロブラストを用いてsiRNAによるノックダウン実験を行い、酵素活性を正常化することが可能であることを示している。
残念ながらスフィンゴリピッドの合成が高まることで、なぜ運動神経特異的な変性が起こるのかについては全く言及されておらず、今後の問題になる。また、なぜ同じ変異を持つ父親で同じ病気が発症しなかったのかも解析が必要だろう。ただ、スフィンゴリピッドはインフラマゾームを介する慢性炎症の誘導因子としても知られており、おそらくこのラインの研究が今後出てくるのではないだろうか。とすると、代謝疾患と言っても、他のALSの発症機構を考える意味でも、重要なモデルになるような予感がする。
2021年6月4日
ゲノム情報=核酸配列と思うかもしれないが、決してそうではない。例えばオペロンやホメオボックスといった、遺伝子自体のクラスターといった1次元構築や、さらには3次元トポロジーも、ゲノム自体の重要な情報の一部になっている。
このトポロジーの解読についてはHi-Cを代表とする様々なテクノロジーによりわかってきたが、トポロジーが何により決まっているのかについてはよくわかっていない。
今日紹介するオランダ・ガン研究所からの論文は、トポロジーの種間の差を手がかりに、condensin IIによりこれが調節されていることを示した、面白い研究で5月28日号のScienceに掲載された。タイトルは「3D genomics across the tree of life reveals condensin II as a determinant of architecture type(生命の系統樹を網羅した3DゲノミックスによりコンデンシンIIが構築の形を決めることが明らかになった)」だ。
この研究では、全ゲノムレベルで領域同士の距離を測るHiCを用いて、なんとクラゲから人間まで、様々な多細胞生物のゲノムトポロジーを調べ、それぞれの共通性と差異について比べている。ただ、これだけの種を比較するとなると、 HiCを使えるだけのゲノム解読が進んでいないと難しいため、今回調べた24種のうち、14種については、新たにゲノム解読の精度を自分たちで上げる努力を行なっている。
結果は、一般的な系統とは無関係に、セントロメアやテロメアで異なる染色体間での接触が見られるType Iと、染色体間の接触が少ないType IIに分類できることがわかった。その上で、Type Iと関連する分子を探すと、Type Iをとる蚊では、分裂期に複製されたDNAを正確に分配するコンデンシンII複合体がかけていることに気づく。
そこでコンデンシンがType IとType IIを決める分子かどうか調べるため、Type II型のヒト細胞でコンデンシンII複合体の形成を抑える操作を行うと、なんとセントロメアで異なる染色体同士が接合するType Iへとシフトすることを明らかにする。
ただ、重要なことはこのようなType II vs Type Iのシフトによって転写レベルが変化する遺伝子は、核膜近くのLAD と呼ばれるドメインに固定されて遺伝子転写が抑えられている一部の遺伝子だけで、ほとんど遺伝子発現には変化がないことで、コンデンシンが本来機能している分裂期の一種の適応として起こった変化ではないかと考えている。
これを確かめるため、分裂期をコンデンシンIIの有無で観察してみると、分裂期をへた後G1期でのセントロメアの集合がコンデンシンIIにより抑えられていることがわかる。また、コンデンシンIIがないと、核内で核染色体の領域が混じり合ってしまっていることも示している。
これらの結果から、おそらく染色体の数と長さの変化に適応してコンデンシンIIのレベルが変化し、比較的短いばあいは染色体を濃縮して分離するType II、染色体が長い場合は厳しく染色体を分離しないType Iが分かれたと考えている。
少し専門的だが、同じ種の中でも染色体の数や長さが大きく変化することを考えると、納得いく説明に思える。しかし、コンデンシンIIが欠損したType I細胞を維持し続けると、染色体が融合して長い染色体ができるのだろうか、興味が湧く。
2021年6月3日
あと何回、このホームページに6月3日とタイプすることができるだろう。幸い、73回目の誕生日を迎えることができた。私にとっては区切りの日なので、個人的趣味に合わせた論文や総説を紹介することにしている。今年は5月21日号のScienceに、いつも見習いたいと思っている同い年のde Waalさんが総説を書いていたので、それをだしにして、自由に想いを述べることにした。総説のタイトルは「Modern theories of human evolution foreshadowed by Darwin’s Descent of Man(ダーウィンの人間の系統により予示されていた人間進化の現代理論)」。
De Waalさんのさんの総説は、今年がDarwin のThe Descent of Man出版150周年にあたることを記念して書かれたもので、このテーマについて書ける最もふさわしい科学者が選ばれたと言える。De Waalさんはボノボなどの類人猿の観察を通して人類進化を研究している現役の研究者だが、何々学者と一言で表せないぐらい広い知識に裏付けられた論文や著作を書いている素晴らしい科学者だ。なかでも「The Bonobo and the Atheist (翻訳では道徳性の起源というタイトルになっている)」は、これまで哲学の主題として見られてきた課題が、まさに科学の課題であることを示した重要な著作だ。その意味で、The Descent of Manもまさに同じで、人間の社会やそれを支える道徳などの規範もまた科学の対象であるというダーウィンの確信を述べた著作だと思っている。
この年になっても、京大ではフレッシュな1年生に、彼らが向かおうとしている生命科学とは何かを講義させてもらっているが、私はダーウィンを、近代科学誕生とともに一旦棚上げにされた様々な非物理学的因果性を「ダーウィン・アルゴリズム」という形で科学に取り戻した科学者だ、と、教えている。授業の感想文を読むと、毎年何人かは、このダーウィンアルゴリズムが単純にゲノム情報だけを対象としていないことに気づいているのがわかる。これは、生物に集まる情報が決してゲノムに限らないためで、ボールドウィン効果と呼ばれたりしている問題だが、これに気づいた学生のうちには、さらに道徳や倫理の問題がこの延長にあることまで気づいているのに驚かされる。
今風に言うと、ゲノム情報の多様化に対するダーウィンアルゴリズムを対象とした種の起源を書く過程で、ダーウィンは同じアルゴリズムが適応されるかもしれない新しい2つの領域を考えていたのだと思う。
一つは、種の起源の最終センテンスで、
「生命は、もろもろの力と共に数種類あるいは一種類に吹き込まれたことに端を発し 、重力の不変の法則にしたがって地球が循環する間に、じつに単純なものからきわめて美しくきわめてすばらしい生物種が際限なく発展し、なおも発展しつつあるのだ。」ダーウィン,渡辺 政隆. 種の起源(下) (光文社古典新訳文庫) (Japanese Edition) (Kindle の位置No.4185-4188)。
と述べられている、生命を生み出す最初の過程で、この時ダーウィンが無生物から生物の進化に想いを馳せていたことがわかる。最近の研究を見ると、この化学進化でもやはりダーウィンアルゴリズムが成立することがわかる。
そしてもう一つがThe Descent of Manで、高次脳機能などにより生まれた新しい情報メディアもダーウィンアルゴリズムに従うことで、この進化にゲノムが支配されていくことで、人間が進化したことに気付いている。例えば、他人のために自分を犠牲にすると言う崇高な道徳性は、自分を犠牲にすることでゲノムから見れば当然早く淘汰されるはずなのに、この性質が集団に受け継がれるのはなぜかと言う問題について、社会内に形成された規範により遺伝的な選択が影響されることをはっきりと述べている。
私が解説するまでもなく、de Waalさんは、The Descent of Manのポイントが、1)人間の特質ももとを辿れば他の動物に見られることで、量的な差でしかないこと、そして2)おそらく2足歩行をきっかけとして新しい共同のあり方がうまれ、これを基礎に発展した社会と社会性が、人間の遺伝的進化を促したこと、であることを、様々な例を挙げて述べているのでぜひ読んでほしいと思う。
この2つ目のポイントを、de Waalさんはgene-culture coevolutionとうまく名付けているが、これの究極が、科学により可能になった遺伝子改変かもしれない。遺伝子改変は一見すると自然選択の否定に見えるが、gene-culture coevolutionの観点からは、ダーウィンアルゴリズムの範囲内かもしれない。繰り返すが、よくまとまった総説なので、若い人たちにはぜひ一読を進める。
最後に、誕生日に当たっての今の心境を少し述べて終わろう。
写真は、2年前ウガンダでマウンテンゴリラを見に行った時撮影した写真で、片方の目が失われた高齢の個体が、群の中で一心不乱に葉っぱを食べている姿を撮影している。もちろんゴリラの群れというと、それを統括するシルバーバックで、その威風堂々とした姿に感心するが、足場の悪い山道を青息吐息で歩いてきた高齢者にとって、年老いたゴリラが自由な生活を許されているのをみてもっと感動した。
私たち夫婦も、この高齢のゴリラと同じで、この年になっても自由に生きるのを許されている。その意味で、今まで以上に、人間の重要な要素としてde Waalさんがこの総説でリストした、
などの科学について、より理解を深め、皆さんに紹介していきたいと思っている。
2021年6月2日
感染症の特定には、病原体検査が必須で、様々なチャンネルで検査を増やすことが感染対策の基本になる。オリンピック参加の選手を毎日PCR検査と言ってもなんの不思議も感じない我が国でも、1年前には検査を拡大すること自体ナンセンスといった意見が多くの専門家から聞こえたのは嘘のようだ。
とはいえ、新型コロナウイルスの検査の主流は今もPCRや抗原検査だが、このHPで何度も紹介したように(https://aasj.jp/news/lifescience-easily/13013 、https://aasj.jp/news/watch/8385 )、クリスパーを用いた系に変わっていくと予想する。ただ、これまで用いられていたCas12やCas13のように、活性化されると周りの全ての一本鎖DNAを切る性質を用いた場合、ガイドを増やして様々な変異体もカバーすれば、感染を見落とすことはないが、感染している変異体を特定するには、単一のガイドを用いた検査をやり直す必要があった。
今日紹介するビュルツブルグにあるヘルムホルツ感染症センターからの論文は、通常用いられるCas9の新たな可能性を追求する中で、一回の検査でウイルス変異体を特定できる方法を開発した研究で、5月28日号のScience に掲載された。タイトルは「Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9(ホストの転写物中の標準とは違うクリスパーRNAを理解することでCas9のマルチプレックスRNA検出が可能になる)」だ。
CRISPR/Cas9=遺伝子編集と頭の中が固定されてしまっていると、Cas9+ガイドRNAの組み合わせで、ターゲットを切断する過程を想像するだけで終わるが、クリスパーの生物学を研究している人にとっては、ガイドRNAはあくまでもcrRNAとtransactivating crRNA(tracrRNA)が結合したものだ。これを一体化させて遺伝子操作に使ったというのがダウドナさんとシャルパンティエさんの閃きだが、crRNAとtracrRNAを眺めていると、クリスパー領域に存在している遺伝子でなくても、crRNAとして働けるのでは考えるのは当然だ。
この研究ではカンピロバクターの持つCas9に結合する細胞内のRNA を集めてきて、Cas9にリクルートされるRNAの性質を詳しく調べ、tracrRNAと結合してCas9にリクルートされるRNAには、クリスパーシステム領域外に存在する、普通のmRNAの一部が存在していることを発見する。
このnoncannonical crRNAの機能も面白いところだが、著者らはtracrRNAと結合してCas9にリクルートするためのRNA条件を詳しく検討し、こうして得られた条件を元に、tracrRNAの一部に検出したいRNA配列を組み替え、さらにこうしてできたRNAペアにより活性化したCas9に切断させる蛍光ラベルしたインディケーターDNAにも、検出するRNA配列の一部を取り込むことで、サンプルの中に存在する特定のRNA配列に反応して、インジケーターDNAが切断されるという、RNA検出系LEOPARDを完成させている。
このときインジケーターDNAの切断後の長さを変えておくことで、複数の標的を検出し、しかも特定できる。この研究では、アジレント社の電気泳動システムBioanalyzerを用いて、インディケーターの長さを測定するパイロット系を用い、1μlに10コピーの感度で変異ウイルスを特定できることを示している。
この研究では、Bioanalyzerという普及が難しい仕組みを使っているが、将来はインディケーターの標識を複数にしたり、あるいは思い切って変異ウイルスの数だけのマイクロアレーを用いるといった使い方も可能だろう。いずれにせよ、実験室レベルでも、感染と同時に変異株の種類を特定できる検査が可能になったことは、今後の感染症対策にとっても重要だ。