2024年9月4日
『5-Formylcytosine is an activating epigenetic mark for RNA Pol III during zygotic reprogramming(5-フォルミルシトシンは胚のリプログラミング時に RNA Pol III を活性化するエピジェネティック標識として働く)』とタイトルを見て驚いた。ゲノムのシトシンメチル化、あるいはハイドロオキシメチル化は知っていても、フォルミル化とは初耳だった。
早速調べてみるとメチル化されたシトシンがまず Tet により酸化されてハイドロオキシメチルになるが、これがさらに酸化されるとフォルミルシトシンになる。すなわち、メチル化を外す Tet の作用で出てくる中間体で、最終的には thymine DNA glycosylase により修飾を受けないシトシンに戻す過程で発生する。
今日紹介するマインツにある分子生物学研究所からの論文は、このフォルミル化シトシン (5fC) が、単純にシトシンからメチル基を外す過程のバイプロダクトではなく、初期発生で母親からの RNA から、胚由来の RNA へと変化する胚ゲノム活性化過程で、RNA polymerase III 特異的な転写活性化標識として働いているという研究で、私にとっては全く新しい話だった。論文は8月29日 Cell にオンライン掲載された。
この研究ではアフリカツメガエルの初期発生時期に 5fC の出現を質量分析器で調べ、メチル化が進む時期で胚ゲノムの転写が始まる時期に急速に上昇し、神経胚期になると消失することを発見する。また、5fC を認識する抗体を用いて胚を染色すると、このことが確認されるだけでなく、5fC が主に傍核小体コンパートメントと呼ばれる、tRNA や rRNA の転写が起こる特別な構造に局在、さらにこれらの転写に関わる RNAポリメラーゼIII (PolIII) の局在とオーバーラップすることを発見する。
そこで メチル化DNA、ハイドロオキシメチル化DNA、そして 5fC をそれぞれ免疫沈降すると、Pol III はほとんど 5fC だけと共沈することから、Pol III により転写されている場所を指示する標識になっていることがわかる。
Pol III は tRNA や 5S rRNA など小さな RNA の転写に関わることが知られているが、どのゲノム領域がフォルミル化され Pol III 作用の標識になっているのか、フォルミル化された領域を抗体で精製した調べると、tRNA が並んでい短い領域が集中してフォルミル化されており、DNA修飾ではまだメチル化されているものの、ヒストン標識ではすでにオープンになっている領域であることがわかった。
あとは、フォルミル化に Tet2/3 が必須であり、これがないと tRNA の転写が起こらないこと、逆にフォルミル基を除去する thymine DNA glycosylase が存在すると、同じように tRNA の転写が低下することを示している。
以上のことから、発生初期元々 DNAメチル化により転写が抑えられているとき、母親の mRNA から胚自体の mRNA へのスイッチが起こり、このとき Tet が発現しメチル基を除去しにかかるが、thymine DNA glycosylaseの発現がまだ起こらないため、メチル基が完全除去に進まないギャップ時期に、特に翻訳に必須の Pol III による tRNA の転写を急いで進めるための特異的な機構として進化したといえる。
最後にマウスの初期発生でも Pol III と5fC の局在が一致することを示して、この現象がアフリカツメガエルだけではなく、哺乳動物でも存在すると結論している。
我々の身体は本当にうまくできている。
2024年9月3日
免疫反応の抗原から増殖まで、完全にコントロール可能なガン免疫治療として大きな期待が集まっているCART治療だが、なかなか使用が拡大しない。すなわち、抗原刺激の入り口だけをコントロールできても、まだまだ多くの道の要因が存在してT細胞をコントロールしきれないことを意味している。
今日紹介する米国ペンシルバニア大学からの論文は、CARTが抗原に出会って最初に分裂したときに発生する細胞運命の非対称性に注目した研究で、8月28日 Nature にオンライン掲載された。タイトルは「Fate induction in CD8 CAR T cells through asymmetric cell division(CD8CART細胞は非対称分裂により運命が決定される)」だ。
この研究以前も細胞分裂時の娘細胞の観察からT細胞が刺激されたとき、例えば Mycタンパク質の非対称分布が起こることが知られていた。この研究ではこのような単一細胞レベルの研究を、細胞集団レベルに引き上げる目的で、LIPSTC と呼ばれるロックフェラー大学で開発されたシステムを利用している。
LIPSTIC は標的分子に結合させた酵素を用いて、標的と結合した分子を標識するシステムで、CART の場合ガン細胞抗原に酵素を結合させ、それと結合したキメラ抗原受容体に蛍光標識を結合させている。このガン細胞による刺激(免疫シナプスと呼ばれ、このシナプスを起点に非対称分裂が起こる)のあと細胞が分裂すると、ガン細胞と結合した側と反対側の細胞を、蛍光標識の分布で区別することができる。
この方法で、ガン側、反対側の細胞の機能や分子発現を調べ、
- 機能的には、ガン側は代謝的にも活性化されキラーとして機能し、そのまま運命が決定され、最終的に消耗する。一方、反対側細胞はメモリー細胞として機能し、次の刺激で同じように非対称分裂を起こす。
- ガン移植モデルでそれぞれのキラー活性を調べると、反対側細胞は長期間マウス内で維持され、持続的なキラー活性を発揮するが、ガン側細胞は最初効果はあっても長続きしない。
- Single cell RNA sequencing を行い、遺伝子発現をそれぞれの細胞で調べると、ガン側と反対側で転写因子の発現、細胞表面分子の発現ではっきりと分かれており、それぞれの発現は非対称分裂時に非対称に分布した分子と非対称分裂の結果転写自体が変化して発現パターンが異なった転写因子の両方が存在する。
- これら発現レベルで変化する転写因子は、分裂後にそれぞれのタイプに収束していくこと、そしてこの結果として、反対側は IL7R を発現したメモリー細胞へ、ガン側細胞はMycを発現し代謝が高まったエフェクター細胞へと運命決定される。面白いのは、このときの運命決定が、あとで抗原刺激を受けても維持されることで、CART の樹立時の条件のヒントを与えてくれる。
- メモリーへの運命決定を左右する分子として IKZF1 が特定され、IKZF1 をノックアウトすることで反対側細胞への運命決定が可能であることを示している。
免疫シナプス、非対称分裂という意味で特に新しいわけではないが、CARTを用い、しかも集団レベルの解析に引き上げたことで、CARTを完全にするための重要な方法として、今後役立つと期待できる。
2024年9月2日
今少し口内炎で食べたり話したりすると痛みを伴う。なんとか抑えようといろいろやっているが、結局は原因がなくなるまで完全に解放されることはないだろう。実際、痛いとジタバタするのは人間だけで、野生の動物にとって痛みは、原因から逃れるための信号であっても、痛み自身はアクションの対象にならない。人間だけが、痛み自体を対象として、そこから解放されようと様々な努力を重ねてきた。その結果様々なメカニズムの鎮痛薬が開発されたが、古代メソポタミアですでに使われていたことが知られているアヘン由来の成分モルフィンは5000年を超えた今も鎮痛剤の主役を演じ、逆に使いすぎによる中毒問題を引き起こしている。
これほど長い歴史を持つ薬剤だが、モルフィンが鎮痛作用を発揮するメカニズムについては以外とわかっていない。今日紹介するスウェーデンカロリンスか研究所からの論文は、マウスを機械的あるいは熱で刺激したときの痛みを、モルフィンが抑える過程を解析した現在の神経科学の粋を集めた研究で、8月30日号 Science に掲載された。タイトルは「Morphine-responsive neurons that regulate mechanical antinociception(機械的刺激に対する鎮痛作用を調節するモルフィンに反応性の神経細胞)」だ。
モルフィンの鎮痛作用の研究が難しいのは、モルフィン受容体が、興奮、抑制を問わず多くの神経細胞で発現しており、モルフィン刺激自体多彩な効果があるため、鎮痛作用だけを取り出して研究するのが難しいからだ。
この研究では TRAP 法と呼ばれる、一度興奮した神経を標識したり、操作したりする方法を用いて、末梢の刺激に対する鎮痛作用に関わる神経細胞が存在することが知られている吻側前帯状皮質の神経を特異的に刺激すると、痛みを抑えることが確認される。
このときモルフィンに反応する細胞を single cell RNA sequencing (scRNAseq) で調べると、興奮神経から抑制神経まで多くの細胞がモルフィン受容体を発現しているが、脊髄への投射と刺激により、痛みを抑える性質をベースに鎮痛作用に関わる神経を特定すると、最終的に BDNF を発現するグルタミン作動性の興奮神経が特定された。
これまで、モルフィンに反応して様々な神経の オン・オフ バランスで鎮痛作用が発揮されるという考えもあったが、最終的に吻側前帯状皮質由来の一本のルートに特定できたのは大きな前進だ。この神経を興奮させると、BDNF が分泌され、それを受ける末梢神経の閾値を変化させて鎮痛作用を発揮すると考えられる。実際、BDNF をノックアウトすると、鎮痛作用は完全になくなる。
刺激により脊髄内で末梢神経と相互作用する時、痛みを抑えるので、刺激がリレーされる神経細胞は、抑制性神経と考えられる。そこで、single cell RNA sequencing データベースから最も適した脊髄抑制性神経を探索し、galanin 発現の抑制性神経がこの刺激をリレーして末梢の感覚細胞の興奮閾値を下げることを明らかにしている。
かなり省略して紹介したが、最初に述べたように神経科学の粋を集めてこの回路を特定している。これまで吻側前帯状皮質を刺激することで痛みが抑えられることは知られていたが、今後より末梢で、この特定の回路の活性を上げることで、モルフィネに頼らない鎮痛作用を実現できる可能性がある。期待したい。
2024年9月1日
昨日に続いてアルツハイマー病 (AD) 論文を紹介する。今日紹介するイスラエルヘブライ大学と米国コロンビア大学からの論文は、亡くなった AD患者さんの465例の脳標本から核を単一レベルで取り出し、単一核毎に発現 RNA を解析して AD への軌跡を明らかにしようとした研究で、8月28日 Nature にオンライン掲載された。タイトルは「Cellular communities reveal trajectories of brain ageing and Alzheimer’s disease(細胞コミュニティーにより脳老化とアルツハイマー病への軌跡が明らかになる)」だ。
AD標本の single nucleus sequencing (snRNAseq) についてはおそらく何編も論文が発表されていると思う。ただ、ほとんどの場合アルツハイマー病でどの細胞集団が上がっているといった結果を提出するので終わっている。一方、この研究では snRNAseq データをまず AD の時間経過と対応させたあと、今度は一人一人のデータをこの軌跡に重ねることができる解析方法を開発し、AD の病気の経過を再定義しようとする研究で、AD への軌跡を求めるという意味で包括的で新しい。
まず456人のコホート参加者の single nucleus 160万個を解析し、95種類の細胞集団に分けている。456人という大きな数だが、各個人では大体3000個の核に相当する。参加時点では全員認知症状はないが、64%が死亡後の組織検査で AD と診断され、そのうち36%は AD型認知症、そして26%が軽度認知症と死亡時には診断されている。
まず95種類の集団を AD のステージに改めて分類し直し、アミロイドβ 蓄積、異常Tau 出現、そして認知症状へと進む過程を、2種類のミクログリアと、1種類のアストロサイト、そして1種類のオリゴデンドロサイトで AD の軌跡を定義することができることを示している。すなわち、アミロイド蓄積が始まる前からミクログリア1が働き、蓄積が始まるとミクログリア2が上昇、その後異常Tau がたまり始めると、アストロサイト1が上昇、最後にオリゴデンドロサイト1が上昇すると認知症が始まるという軌跡だ。
一方 AD と診断されなかった集団には、認知症と診断されていてもこの3種類の細胞が中心となる軌跡は全く見られない。すなわち、老化に伴う2種類の軌跡があり、そのうちの一つが AD の軌跡で、この AD経路はこれまで研究されてきた AD の分子機構ともほぼ一致するという結果だ。
これは AD とそれ以外を層別化した結果だが、これらの軌跡をベースに個人レベルの single nucleus データを重ねる BEYOND という解析システムを開発し、2種類の軌跡の上に個人データをプロットできるようにしている。その結果、最初は脳のホメオスターシスを維持する細胞コミュニティーが老化とともに低下し始めるが、ここで APOEタイプに影響を受ける脂肪をためたミクログリア1へとスイッチすると、アミロイドの蓄積を防げなくなり、アミロイドがたまり始めるという、それぞれキーになる細胞の機能的側面も推定できるようになる。他にもミクログリア2が上昇すると、Tau とは無関係にアストロサイトが高まり、認知症へと進むことなども想定できる。
結果は以上で、今後はこの軌跡をもっと大規模な個人データで調べ直すのと、それぞれの機能を別々に変化させうる治療方法の開発で、ミクログリアを標的にする治療開発を行っている人たちには重要な情報になると思う。
2024年8月31日
アルツハイマー病の新しい治療モダリティーの開発が急速に進んでいるように思える。いくつかについてはこの HP で紹介するとともに、Youtube で紹介した。このように様々なモダリティーのある中で、アミロイドβ を標的とする治療に続く最もストレートな標的は Tau だろう。ただ、Tau の場合基本的には細胞内で凝集して悪さをするため、遺伝子治療がまず穿孔しているように思う。例えば昨年4月に紹介した Tau アンチセンス治療は第一相治験に進んでいる(https://aasj.jp/news/watch/21969)。 細胞内に到達できない抗体治療も研究が進んでいる。というのも抗体と結合した細胞外 Tau 凝集塊は抗体と結合することで神経細胞内に取り込まれ、TRIM21ユビキチンリガーゼシステムを介して凝集 Tau を分解することが報告されたからだ(https://aasj.jp/news/watch/21828)。その結果、抗体を細胞内に取り込まれるナノ粒子に詰め込んで治療を行う試みがつい最近報告され紹介した(https://aasj.jp/news/watch/24763)。
今日紹介するケンブリッジ大学からの論文は、抗体もユビキチン系も全てまとめて遺伝子導入して細胞内の凝集 Tau を分解する治療法開発で、8月30日号 Science に掲載された。タイトルは「Aggregate-selective removal of pathological tau by clustering-activated degraders(病理的凝集 Tau 特異的に活性化されるタンパク分解システム)」だ。
これまで Tau に対する抗体が細胞内に入ると、Trim21 が集合体を形成し、これがユビキチン化され Tau にプロテアソームをリクルートすることが知られていた。そこで、この活性化に必要なドメイン (RD) に直接H鎖抗体(ナノボディー)を結合させ、凝集 Tau に結合したときに RD 同士が結合し、活性化、ユビキチン化される遺伝子を設計した。
あとはこれが実際に細胞内で働いてくれることを試験管内、モデルマウスを用いて調べている。
試験管内の実験ではこの分解遺伝子が働くと、大きな凝集を作っているTau分子だけが特異的に分解される。このときのナノボディーのアフィニティー変えて調べると、アフィニティーをかなり落としても凝集Tauと結合して十分分解してくれること、またアフィニティーが低い方が正常のTauへの作用がほとんどなく、治療には適していることを示している。
心配になる他のタンパク質への影響だが、HMGCR、とPNMA1 の発現量が低下することはあるが、細胞自体の活性には問題がないと結論している。
次にこの分解遺伝子をアデノ随伴ウイルスをベクターとして脳に直接導入すると、導入した側の凝集 Tau を半減させることができる。
次に Tau 凝集が起こるトランスジェニックマウスを用いて、片側の皮質に分解酵素遺伝子を導入すると、期待通り凝集 Tau を8割程度低下させることに成功している。
最後に、脳細胞に導入しやすくしたアデノ随伴ウイルスに分解酵素を入れ、これを静脈注射することにより臨床に近い条件での治療実験を行い、導入後10日目にはすでに蓄積していた Tau を半減させられることを示している。
認知機能実験は行われていないが、病理学的には極めて期待が持てる方法で、実際明日から治験を始めてもいいというところまで来ている。是非期待したい。
2024年8月30日
今から50年以上前、研修医で働き出した頃はまだまだ結核患者さんは多かった。リファンピシンなどの薬剤も使われるようになり、治る病気ではあったが様々な病型を経験することができた。多くの感染症と比べて、結核の表現型は多様で、ある意味で人間の免疫系の複雑性を示していた。ただ様々な病型に至るメカニズムについては全くわからなかった。
幸いヒトゲノムが進み、多くの遺伝子変異と結核の表現型との関わりが続々明らかにされてきた。例えばインターフェロンγ 合成や反応系が欠損する患者さんでは、 BCG 接種のような弱毒菌でも病気が発症する。また、マクロファージ内での活性酸素合成が傷害されると肉芽腫が起こりやすく、元々肉芽腫が発生する結核に対する感受性が高くなる。すなわち、細胞内細菌感染が持続することが肉芽腫の原因になることがわかる。
結核は現在も多くの国で広がっている感染症なので、結核にかかりやすい患者さんを丹念に調べることで結核に対する免疫だけでなく、人間の免疫機能の分子基盤を明らかにする重要な情報が得られる。そのため現在も特に遺伝性が疑われる結核患者さんを調べる研究が続いている。
今日紹介する、ハーバード大学、ロックフェラー大学がコロンビアの Antioquia UdeA 大学と発表した論文は、結核に繰り返し感染する患者さんを調べると、炎症の核になる分子 TNA が欠損していたことを報告した論文で8月28日 Nature にオンライン掲載された。タイトルは「Tuberculosis in otherwise healthy adults with inherited TNF deficiency(結核以外に健康な遺伝的 TNF 欠損)」だ。
この研究ではコロンビアの従兄弟結婚の多い家系でみられた結核を繰り返し発症した患者さんの遺伝子を、他の家族とともに調べている。コロンビアのように結核が広がっている国でも、通常結核は一度免疫ができると、繰り返すことはほとんどない。全エクソーム解析の結果、両方の患者さんとも TNF 遺伝子に20塩基の挿入が起こり、その結果ストップコドンが早々と現れ、ほとんど機能的 TNF が合成できないと考えられる。この遺伝子を細胞に導入して TNF 合成を調べると、予想通り TNF を分泌できない。
2人とも同じ変異をホモで有している一方、調べた他の親兄弟では変異を持っていてもヘテロであることから、TNF 遺伝子欠損が両方の染色体に揃っていると結論している。
あとは、TNF が欠損することで、他の症状はあまりないのに、なぜ結核に繰り返し感染するかが問題になる。インターフェロンγ 欠損と異なり、2人とも BCG 接種を受けても特に問題はない。また、白血球や免疫細胞の構成や機能を調べても、ほとんど正常と変わらない。
詳しく調べていくと、肺胞や末梢血のマクロファージの活性酸素の合成が低下していることがわかった。ただ、この違いも結核死菌や BCG で刺激したときに見られ、食菌作用に伴い起こる活性酸素合成が特異的に押さえられていることがわかる。
すなわち、TNF は結核菌やリステリアのような持続的細胞内感染が起こるとき、マクロファージ特異的活性酸素産生を刺激して菌をコントロールするのに必要だが、他の一般的な感染では TNF がなくても完全に菌を除去できることを示している。TNF は進化的にも古い分子なので、結核のような感染症に遭遇した哺乳類や人間が、通常の細菌除去システムに加えて、TNF を使い回して対応した可能性がある。
おそらくその結果が、我々が TNF を主役とする関節リューマチにかかるようになった原因かもしれない。
2024年8月29日
元々数理が苦手なので私自身はどうしても敬遠する傾向にあるのだが、生命現象を力学系で説明する研究は多い。中でも小さな違いで大きな変化が起こるカオスの概念や、時間経過とともに一定の状態に収束するアトラクター概念は、我が国でもよく議論されていたのを覚えている。引退後、論文を通してだけ研究世界を見るようになってからは、私が敬遠しているせいか、ほとんどアトラクターについての論文を目にすることはなかった。ところがこの1-2週間、神経科学で Nature に2報、Cellに1報、ホルモンや神経ペプチドにより調節される行動の持続性をアトラクターで説明する論文を相次いで目にした。そこで苦手を顧みず、どんな研究が行われているのかカリフォルニア工科大学が8月27日 Cell にオンライン発表した論文を取り上げることにした。タイトルは「A line attractor encoding a persistent internal state requires neuropeptide signaling(神経ペプチドシグナルに必要な持続的内部状態はラインアトラクターによりコードされる)」だ。
論文を読んで感じたのは、ラインアトラクターが先にあって、このモデルを適用する系を探した結果の研究のように思える。通常特定の行動につながる神経活動は、特定の神経活動アンサンブルの活動パターンとして解読され、実際デコーダーを用いて解読できるが、通常のデコーダーでは行動を神経活動から解読できない場合、アトラクターモデルを適用できる可能性が出てくる
この例として、この研究ではオスマウスがオスに対して起こす攻撃行動に関わるオキシトシン (OX) とアルギニンバソプレシン (VP) シグナルに注目し研究を行っている。視床下部腹内側核で両方の受容体をノックアウトすると、オスへの攻撃性だけが押さえられ、メスへの反応は全く影響されない。すなわち、OX+VP によりオスの攻撃性が維持されている。
OX+VP 阻害にともない、カルシウムイメージングから得られる視床下部の神経活動全体は確かに低下する。そこで、この受容体を発現し、オスへの攻撃性に関わる神経細胞の反応を個別かつ詳細に調べている。この結果、同じ受容体を発現していても、オスへの反応へと調整されたアンサンブルが存在し、この下部構造の上に、匂いを嗅いだり、アタックしたりする個別の反応を調節する神経細胞が活動していることがわかる。ところが、オスメスを区別する神経アンサンブルはデコーダーで区別できても、匂いを嗅いでからアタックするという行動の変化に対応する神経活動をデコードすることができない。
そこでオスへ選択的に反応する神経がオスに出会ったときに起こる攻撃行動に対応する神経反応にラインアトラクターモデルが適用できるのではと着想し、神経反応を解析している。結果だが、匂いをかいで、アタックするまでの攻撃時に必要な持続的な神経変化はラインアトラクターに収束した反応として解読することができ、またスライス培養に OX-VP を添加する実験から、このアトラクター状態がこれらの神経ペプチドにより維持されることを示している。
要するに、匂いを嗅いでアタックするという行動に対応する神経細胞は確かに存在するが、行動変化を普通のデコーダーでは完全に説明できない。これに対し、オスへの反応が調整された神経細胞の個々の反応性をラインアトラクターモデルで解析し直すと、明確に行動を神経活動から説明できるということになる。
結果は以上で、どうして OX+VP が神経反応をラインアトラクターへ収束させるのかはよくわかっていないため、なかなか理解した気分になれないが、神経細胞アンサンブルの特定の状態を、一部の変化に影響されることなく安定に持続するためには、アトラクターモデルは確かに魅力がある考えだ。例えば現在も謎の意識について、特定の意識領域が存在すると考えるか、脳全体が一種のアトラクターに収束するとも考えることができる。今回紹介した限られた行動と違い、意識をアトラクターで説明するための実験を構想するのは至難の業だと思うが、例えばデフォルトモードネットワークなどからこの可能性を調べることは可能かもしれない。
2024年8月28日
8月14日、UKバイオバンクの血清を使って、20種類の血中タンパク質で mortality から様々な病気の発症のリスクまで予測できることを示した驚くべき論文を紹介した(https://aasj.jp/news/watch/25007)。この研究ではUKバイオバンクの参加者が対象になっているが、このような大規模コホートが時間とともに、参加者の運命を反映するようになって、ますます威力を増してきていることを実感する。
今日紹介するペンシルバニア大学からの論文は、UKバイオバンクを含む MRI 画像データのあるコホート研究を集めて老化に伴う脳の構造変化を調べ、老化の指標を開発しようとした研究で、8月14日 Nature Medicine にオンライン掲載された。タイトルは「Brain aging patterns in a large and diverse cohort of 49,482 individuals(大規模で多様な 49,482人からわかる脳の老化パターン)」だ。
これまで特定の病気を対象として脳の構造変化を調べることはよく行われてきた。また、老化によって脳が萎縮することもよく知られている事実だ。ただこの研究では独自に開発した AI モデルを用いて、まず50歳前後で脳の各部を比較することで、老化を5種類の異なる次元に分解し、それぞれの次元から脳の老化を調べている。
5つの次元を決める変化は、1)皮質下萎縮、2)内側側頭葉萎縮、3)頭頂側頭萎縮、4)広範な皮質萎縮、そして、5)環シルビウス溝萎縮で、それぞれに特徴的な他の変化も特定できる。言われてみれば納得で、環シルビウス溝などは言語や意味記憶に関わるといった具合に、それぞれ異なる機能に関わると考えられることから、別の次元として脳の老化を整理できるというのもよくわかる。
実際、脳老化には様々な要因が重なる。例えば、バイリンガルの場合認知症の発症が減るといったように、遺伝、疾患、環境要因が複雑にからむことから、できるだけ多くの次元で調べる方が脳の老化過程を分析しやすくなる。
結果は予想通りで、
- 例えば認知症では 2)、3)、5)の変化が目立つこと、そしてこの変化から軽度認知症から認知症へ転換するリスクをかなり予想することができる。
- 5)の変化は一般的死亡率と特に強い関係を示す。
- それぞれの変化に対応する遺伝子多型を特定できる。
- 心疾患や腎疾患、糖尿病とそれぞれの変化の起こりやすさが相関する。
- アルコールや喫煙などの生活スタイルと相関する脳変化を特定できる。
など、様々な要因が、生物学的老化と合わさって、脳の構造を決めていることがよくわかる。
一般人にとって最も重要なのはおそらくライフスタイルだと思うので、今後さらに詳しい条件との相関を調べる研究が待たれる。もちろん臨床的に最も重要なのは、認知症の進行リスクを高い確率で予測できることで、この予測と変化に応じたライフスタイル指導などが可能になるかもしれない。老化も認知症も長丁場で、思いつきが検証されるのには時間がかかる。現在認知症を防ぐとして多くの思いつきが提案されているが、MRI を使うことで、これまでよりは早く思いつきの検証が可能になるのではないだろうか。
2024年8月27日
心房由来ナトリウム利尿ペプチドは1981年、カナダの de Bold により発見されたが、その後2年前に亡くなった松尾富三郎先生のグループにより、脳から BNP、CNP が単離された。利尿ペプチド研究の最大の臨床への貢献はなんといっても心不全マーカーとしての BNP が確立したことで、今やこの検査なしに心不全診療はあり得ない。
一方、最初期待された薬剤としての利用は CNP に限られ、軟骨無形成症に使われている。今日紹介するペンシルバニア大学と PharmaIN 社からの論文は、CNP をガン治療に使える可能性を示した前臨床研究で、8月21日号 Science Translatioal Medicine に掲載された。タイトルは「Modified C-type natriuretic peptide normalizes tumor vasculature, reinvigorates antitumor immunity, and improves solid tumor therapies(修飾した C 型ナトリウム利尿ペプチドはガンの血管を正常化し、ガン免疫を活性化し、固形ガンの治療を改善する)」だ。
CNP は脳から分離されたが、血管内皮や線維芽細胞で合成され、血管の構造や機能を高めることが知られている。この研究では、ガンデータベースでガン組織の CNP 発現を調べ、CNP の発現が低い患者さんの予後が悪いことを発見する。
そこで CNP をガン治療研究に使う目的で、血中の半減期を変化させた修飾型 CNP を作成し、皮下注射すると、正常な構築を持つ血管構成に必須の Angiopoetin1 (ang1) の合成が高まり、血管内皮の VE-cadherin 発現が高まる。一方で、血管新生を誘導する VEGF の発現は抑えられ、さらに組織の低酸素環境が改善される。
ガン組織の血管機能が回復するとガンを助け、転移を促進するのではと心配になるが、このブログでも何回か紹介したように、ガン血管を正常な構築に戻すことはガンを抑える方向に働くことが報告されている。
ガンを移植した動物を用いて CNP 投与実験を行うと、ガン組織の血管が増え、さらに血管透過性が低下し、ガン周囲の繊維化が抑えられる。そして、例えば膵臓ガンでは組織繊維化により強く抑制される T 細胞の腫瘍組織への浸潤が高まる。
この結果、他の治療を行わなくても、本来マウスが持っている免疫機能を用いてガンの増殖を抑えるようになり、CNP 単独治療で多くのガンの増殖を遅らせることができる。ただ、この効果は免疫系が存在しない RAG ノックアウトマウスでは観察できない。以上のことから、ガン組織の血管を正常化することで、本来の免疫機能が働けるようになることがわかる。
また、抗ガン剤や放射線治療を行うときも、CNP 投与で効果が高まる。抗ガン剤の場合、特に薬剤が腫瘍に届くことは重要になる。また、当然チェックポイント治療や CAR-T 治療と組み合わせると、その効果をさらに高めることができる。
以上が結果で、もちろん根治効果はないが、様々な治療のアジュバント治療として使える可能性がある。もしそうなれば、発見以来最も広く使われるナトリウム利尿ペプチドになる可能性はある。副作用について気になるところだが、マウスでは特に問題はないようだ。また軟骨形成不全に対してCNPと同じ作用を持つVosoritideが利用されていることを考えると、意外と使いやすいかもしれない。腫瘍間質を攻めることは、膵臓ガンでは最も重要な課題なので、期待したい。
2024年8月26日
現役を退いた時ぐらいから DNA 配列決定に必要なコストが急速に低下し、ガンゲノム研究が毎日トップジャーナルを賑わせるようになった。この結果、一般にはガンが遺伝子変異が重なってできる病気であることが理解されるようになり、個人のゲノムに沿ったテーラーメード治療への期待が高まった。
一方で、ガンゲノムの多様性を実感する研究者から見たとき、これほど多様な変異がバラバラに集まったガンを治療することが本当にできるのかという悲観論も広がってきた。しかし、少なくとも個人レベルでゲノムを調べて治療計画を練った方が予後が良いという治験結果も報告されていることから、悲観論を超え詳細なガンゲノムから最適の治療計画を決めるために必要なデータを蓄積することが必要になる。
今日紹介するオックスフォード大学を中心として集まった国際チームからの論文は、全部で2023人という大規模なガンゲノムを眺めることで、これまでとは異なる景色が見えるのかを調べた研究で8月7日 Nature にオンライン掲載された。タイトルは「The genomic landscape of 2,023 colorectal cancers(2023人の直腸大腸ガンのゲノムから見えること)」だ。
これまでの直腸ガンゲノム解析から大腸直腸ガン (CRC) では KRAS、NRAS 併せて5割が RAS 変異を持ち、p53 変異や APC 変異は8割を超えることから、RAS/APC/p53 の変異で起こるという単純なスキームが頭に染みついてしまった。
この研究ではガンのドライバーの概念を変えて、ガンのポジティブセレクションに関わることが統計的に見られる変異として2000人のガンゲノムデータを調べ、193種類というガンドライバー変異を特定している(その機能は実験的には確かめられていない)。
CRC は、DNA 修復に異常を持つ MSI 型、DNA 合成と修復に関わる DNA ポリメラーゼ ε に変異がある POL タイプ、それと染色体は安定している MSS に分けられ、変異のタイプでもそれぞれ異なっていることから、発生過程が異なっている。この分け方でガンのドライバーを調べると、MSI や POL 型では、遙かに多くのドライバーの変異が重なっていることがわかる。一人の患者さんでの重なりは全く調べられていないのでなんともいえないが、MSI 型や POL 型では、変異を見渡して至適な治療法を考えてくれる AI の必要性を感じる結果だ。
恥ずかしいことに全く私の理解が間違っていたこともわかった。コピー数変化のような大きな染色体の変異は修復異常を持つ MSI、POL 型で多いと思っていたが、実際には逆で MSS にほぼ特異的と言っていい。この構造変化が起こりやすいホットスポットが示されたことも大きい。
ここで用いられたドライバー特定方法は7種類の異なるアプリを全て使った方法で、統計的にポジティブセレクションが見られれば全てリストされてくる。そのため、ガンが免疫を逃れるために起こした変異もドライバーとしてリストされてくる。面白いのは、この免疫反応の仕方から、他のドライバー変異の中で強い抗原性を持つものと、そうでない変異を分けることもできる。例えば RAS 変異は抗原性が強そうだ。また、MSI 型は変異が起こりやすいが、その結果として HLA や抗原プロセスに関わる遺伝子の変異が多い。これもワクチンや CAR-T などを考えるときに重要になる。
これだけの数を集めると、これまで RAS/APC/p53 とひとくくりにしていた MSS をさらに詳しく分類することも可能になる。治療前に調べられた1000人ゲノムから、6種類に分けられ、大きな構造変異が起こる頻度がそれぞれで全くことなる。また、大きな変異が起こりにくい MSS-GS 型は、予後が良いことも確認される。
さらにこれまで全く知られなかった極めて特殊なタイプも特に POL や MSI 型で特定できることから、前ゲノム解析の重要性を示している。
最後にこのように詳しく分類することで、長い大腸の発生場所や、さらには最近増加傾向にある若年性 CRC と、特定の分類型との相関がわかってきた。
要するに膨大なデータなので、詳細の理解は意味がない。当然ガンは個人個人で違うことは間違いないが、それでも共通性は多い。このガンの個性と共通性をうまく抽出して、究極のテーラーメード医療を目指すとき、AI の急発展を利用しない手はない。ガンゲノム研究は新しい転換点にさしかかってきた気がする。