2024年5月7日
神経伝達速度がアクソンのミエリン化により維持されていることは神経科学のイロハだが、軸索がミエリン鞘と呼ばれる膜で包まれているのを電子顕微鏡写真で見ると、その美しさに感動を覚える。逆に言えば、このような美しい形態を維持することが簡単でないこともよくわかる。事実、神経損傷や多発性硬化症でミエリン鞘が傷害されると、再生には時間がかかる。また、老化により脱髄は進み、痴呆の原因になる。
今日紹介する中国四川大学と、米国シンシナティ子供病院からの論文は、HDAC3 阻害剤として開発されていた化合物 ESI1 がオリゴデンドロサイトの分化を促進してミエリン鞘形成を高め、多発性硬化症治療から老化脳でのミエリン化促進まで多様な効果を持つことを示した研究で、5月2日 Cell にオンライン掲載された。タイトルは「Small-molecule-induced epigenetic rejuvenation promotes SREBP condensation and overcomes barriers to CNS myelin regeneration(エピジェネティック若返りを誘導する小分子化合物は SREBP の相分離を誘導し中枢神経でのミエリン化の障害を突破する)」だ。
実に多くのデータが集まった論文なので、詳細は省いてポイントだけを紹介する。
この研究は、多発性硬化症(MS)の脳で、オリゴデンドロサイトは比較的正常に存在するのに、なぜミエリン化がうまくいかないのかという疑問から発している。MS 脳組織を解析した結果、ミエリン化に必要な遺伝子がエピジェネティックにサイレンスされていることを発見する。そして、このエピジェネティック変化を反映して分子マーカーを発現するトランスジェニックマウスを用いて、サイレンシングを解除する化合物をスクリーニングし、ヒストンアセチル化酵素 HDAC3 阻害剤としてインドで開発された化合物 ESL1 を特定する。この化合物は最初老化による認知障害を治療できることが示されていた。
後は発生過程、神経再生過程、そして MS で MSI1 の効果を調べ、オリゴデンドロサイトの分化を促進し、ミエリン形成能を高める結果、神経再生や、MS モデルマウスの再ミエリン化を促進し、症状を抑えることを明らかにしている。
次に培養細胞を用いて ESI1 が確かに HDAC3 を阻害することで、オリゴデンドロサイトをエピジェネティックにプログラムし直し、細胞分化だけでなく、細胞骨格の変化、そして何よりもミエリン形成に必要なコレステロール代謝に関わる酵素群の発現が再活性化されることを示している。
脂肪代謝システム活性化をさらに追求すると、HDAC3 阻害効果だけでなく、コレステロール代謝の核になる転写因子 SREBP 分子の核内での相分離を促進して転写活性を高めることも、ミエリン合成システムの促進に関わることも示している。ただ、この相分離の詳しいメカニズムについてはよくわからないが、スーパーエンハンサー形成と結びついていそうだ。
最後にもう一度生物学的効果の検討に移り、ヒト iPS 由来神経細胞オルガノイドで、ミエリン鞘の長さを延長できること、そしてインドからの論文が示したように、老化による認知機能が改善されるが、この効果が老化脳のミエリン化を再活性化させることによることを示している。
結果は以上で、これまで免疫を抑え、脱髄を抑制することに集中してきた MS 治療に、新しい治療可能性をもたらすとともに、アルツハイマーに並んで認知障害の原因になる白質障害の治療が可能になる可能性が示されたと思う。ESI1 が本当に薬剤として必要な性質を持つのか、他の細胞のエピジェネティックな状態の変化が問題にならないか、など検討項目は大きいが、MS、白質障害の新しい治療可能性が示されたことは極めて重要だと思う。
2024年5月6日
感染防御のためのワクチン開発競争が一段落した今(といっても水面下では熾烈な競争が行われていると思うが)、最近目立つのがガンワクチンの前臨床、臨床研究論文だ。コロナワクチンと同じで様々な方法の開発が進んでいるので、近々ジャーナルクラブで取り上げたいと思っている。
そんな中でも今日紹介するフロリダ大学からの論文は、少し変わった方法で、しかも基礎から第一相臨床治験までデータが示されている mRNA ワクチン研究で、5月1日 Cell にオンライン掲載された。タイトルは「RNA aggregates harness the danger response for potent cancer immunotherapy(RNA凝集塊は強力なガン免疫治療のための danger 反応を制御する)」だ。
この研究では、mRNA ワクチンに使われる脂肪膜粒子を RNA をブリッジとして凝集させ、エクソゾームサイズで多層膜構造を持つ LPA を作成、これを静脈投与するというユニークな方法を開発している。この構造のおかげで、多くの RNA を LPA にロードすることができ、例えばガン細胞の全 mRNA をそのまま使って LPA を作成することも行われる。この出だしの説明を読んで、シュードウリジンが使われていないこと、全身投与であること、サイズが通常のナノパーティクルの数倍であることを知ると、強い炎症反応が出るので大丈夫かなと思うが、RNA と脂肪膜がうまく組み合わさって、ある程度は炎症反応が抑えられているようだ。
まず腫瘍から生成した mRNA をロードした LPA を作成し、腫瘍を移植したマウスに投与すると、容量依存的に強い炎症反応とともに、ガン増殖を抑制することができる。また、200nm以下の LPA だけにすると効果がなくなるので、大き凝集を作ることが重要なこともわかる。もちろん、ガン特異抗原の mRNA を合成して免役することもできるし、驚くことにグリオーマに機能を持ったヒストンメチルか酵素を投与するためにも用いることができる。当然、一つの mRNA だけでなく、ガン抗原と、PD-L1を抑制する siRNA をロードして、免疫反応を高めることも可能になる。
驚いたのは、ガンで高発現が認められ CAR-T の標的として用いられる CD70mRNA をロードして LPA を作り、これを全身投与すると CAR-T の効果が格段に高められることだ。わざわざ CAR-T の標的を全身に投与して正常の細胞を殺すのかと心配するが、実際にはガンへのアクセシビリティーが低いため免疫が成立できていない状況を、全身に CD70 が発現して抗原として利用されることで、正常細胞もある程度は殺されるが、CAR-T を全身で活性化してガンの方に振り向けられるということになる。
全身に投与して何が起こるか詳しく調べており、ほとんどの LPA は全身の間質細胞が取り込み、特に取り込みの多い脾臓などのリンパ組織で強い免疫を誘導すると同時に、末梢での炎症反応を誘導して、免疫細胞の移動を促すと解釈している。さらに、グリオーマではガン周囲の環境も白血球やリンパ球が浸潤しやすい環境へプログラムし直せることも示している。
このように動物実験では理屈はともかく、うまくいっていることから、犬に自然発生したグリオーマの治療、そして人間の臨床研究へと移行している。
10匹の末期グリオーマ犬が用いられ、バイオプシー標本の mRNA をロードした LPA 投与群と、バイオプシー前に免疫を変化させるサイトメガロウイルス分子を投与した後、ガン mRNA を投与する群に分けて効果を調べている。結果は上々で、通常1−2ヶ月で死ぬ犬が、平均で150日、5ヶ月生存できている。また、投与すぐから炎症性サイトカインが血中に放出される。
そして、ヒトでの治験に進んでいる。サイトメガロウイルス pp65mRNA と、グリオーマで活性化されている自己抗原セットをロードして、パイロットで許容性などを調べた上で、第一相試験を行っている。放射線や化学療法を終えた後で、LPA を投与する治験で、期待通り投与初期から強いサイトカイン反応が誘導されるが、これはなんとか乗り越えられているようだ。さらに、ガン特異的抗原に対するT細胞反応も誘導でき、2例ではバイオプシーでガンを検出できず、平均の生存が9ヶ月を超し、5−8ヶ月よりは延命できることがわかった。
結果は以上で、要するに様々な mRNA をロードできる LPA の開発で、臨床治験まで進んでいるが、まだまだ基礎研究も必要な面白いワクチンモダリティーだと思う。
2024年5月5日
京大の再生医学研究所、そしてミレニアムプロジェクトの神戸の発生再生科学総合研究センターの設立と、立て続けに大きな研究所構想の実現に奔走した思い出は今も生き生きとよみがえるエキサイティングな経験だった。これら研究所の設立時、研究所が目指すべき最も大きなゴールとして考えたのが自己ES細胞作成による再生医療だったが、これは設立時には予想しなかった山中さんのiPS細胞により実現している。そして、もう一つ再生医学臨床応用の象徴が血管内皮移植による虚血障害の治療だった。当時まだ米国在住の浅原さんを始め、多くの研究者がしのぎを削っており、ミレニアムプロジェクトでもこの方向の研究を重視した。あれから20年以上が経ち、血管移植療法はどうなっているのか?実は全くフォローしていなかったが、私が今目を通しているジャーナルにはあまり現れてこないし、それほど華々しい話も聞いていない。
今日紹介するハーバード大学からの論文を読んで、血管内皮移植がうまく進んでいない理由を知るとともに、この問題の解決にミトコンドリア移植による内皮ミトファジー活性化が切り札になる可能性を理解した。タイトルは「Mitochondrial transfer mediates endothelial cell engraftment through mitophagy(ミトコンドリア移植はミトファジーを通して内皮細胞を支持する)」だ。
まず前書きを読んで、血管内皮移植では内皮細胞の生着が低く、臨床結果が安定しないこと、間質幹細胞と同時移植はこれを改善できる可能性があるが、複雑な移植で同じ条件での臨床応用が難しいことからまだ普及していないことを知った。
この研究でも、ヒト血管内皮と間質幹細胞移植で、マウス体内での内皮の定着率が上昇することを確認した上で、間質幹細胞から血管内皮へのミトコンドリア移行が効果の原因ではないかと、間質幹細胞のミトコンドリアをラベルして実験を行い、ミトコンドリアが細胞間ブリッジを通って移行していること、このブリッジ形成を TNF で活性化するとより多くのミトコンドリアが移入されることを明らかにしている。
次に、間質幹細胞からミトコンドリアを抽出し、これを内皮細胞と培養して EC の生着率を調べると、ミトコンドリアを移植した群で生着率が上昇し、虚血モデルで血管新生を高めることができる。
しかしよく調べると、移植されたミトコンドリアの数はたかだか細胞全体の10%にとどまり、しかも一週間以内に消失するのに、ミトコンドリアとして機能しているのかが疑問だ。事実、これまでもミトコンドリア移行が血管内皮を活性化するという話はあったが、外部から移植したミトコンドリアが機能を担えているのか疑問が投げかけられていた。
この研究ではミトコンドリア機能維持に必須のミトコンドリアDNAを除去したミトコンドリアを調整し、これを移植するという離れ業の実験を行い、ミトコンドリア移植の効果にはミトコンドリアDNAは必要なく、当然ミトコンドリアの正常機能は必要ないという驚くべき結果を示す。
そして、移植した機能欠損ミトコンドリアが、ミトコンドリア特異的なオートファジー、すなわちミトファジーを活性化することで血管内皮の増殖や移動機能を高めていることを明らかにしている。
生化学的なメカニズムはすっ飛ばして紹介したが、ミトファジーが活性化していることを確認し、またミトファジーを抑制すると生着できないことを示している。
以上が結果で、本当なら血管内皮移植は大きく進展すると思う。また、ミトコンドリアの死骸を使ってミトファジーが活性化できるなら、他の細胞にも応用できるはずで、再生医学の大きなブレークスルーになる様な気がする。臨床から基礎へ、そして臨床へつなげる素晴らしい研究だと思う。
2024年5月4日
昨日に続いて脳と身体のつながりについての研究を紹介したい。
ご存じのように、私たちの細胞一つ一つは地球の時間に活動を概ね合わせるための概日周期メカニズムが備わっており、研究が進んでいる分野だ。そして、この身体レベルの概日周期を、実際に地球の自転を感じる脳レベルの周期で調節しており、その中心が視交差上核だ。
今日紹介するスペイン・Pompeu Fabra大学からの論文は、老化とともに機能が低下する筋肉に焦点を当て、筋肉と脳との間の概日周期を独自に狂わせたらどうなるかを調べた面白い研究で、5月3日号 Science に掲載された。タイトルは「Brain-muscle communication prevents muscle aging by maintaining daily physiology(脳と筋肉のコミュニケーションにより概日機能が維持され筋肉老化が防がれる)」だ。
我々は老化すると視交差上核と身体の神経ネットワークが変化することが知られており、リズムの振幅が低下する。問題は、この変化が身体レベルの老化の原因にもなっている。実際、概日周期の中心的遺伝子Bmal1 をノックアウトしたマウスでは、身体の老化が早まることも報告されている。
この研究では Bmal1ノックアウトマウスをベースに、筋肉でだけ Bmal1 を回復させた M-Bmal1マウス、脳でだけ回復させた B-Bmal1マウス、そして両方で回復させた MB-Bmal1マウスを作成している。これにより、M-Bmal1 は筋肉レベルの概日周期システムは回復するが、脳による調整ができない。一方 B-Bmal1 では筋肉レベルの概日周期は失われるが、脳の概日周期での調節は起こる。そして MB-Bmal1 では筋肉の概日周期が脳により調節されるようになるが、ほかの臓器からは完全に孤立化している。
これらのマウスの筋肉での遺伝子発現の概日リズムを調べると、正常と MB-Bmal1、そして M-Bmal1 の 三者は比較的似ており、B-Bmal1 は完全ノックアウトマウスに近い。すなわち、筋肉の概日周期で見たとき、やはり筋肉独自の周期が優勢で、脳のコントロールだけでは組織レベルの周期を回復できない。
しかし、詳しく見ていくと遺伝子によっては脳のコントロールがないと回復しないグループも存在する点で、筋肉の概日周期は筋肉で独立して行われている部分は大きいが、脳のコントロールも厳然と存在する。それどころか、MB-Bmal1 のように脳、筋肉でのコミュニケーションが完成していても、正常マウスと比べると半分の遺伝子発現の周期が完全に戻らないことは、他の組織からの概日リズム調整が筋肉のリズムに影響しており、一つの組織の概日周期が複数の複雑なコントロールを受けていることを示している。
それぞれの調節を受けている遺伝子群の特徴についても面白い。例えばミトコンドリアの分裂を見ると、脳のコントロールの影響が大きい。他にも様々な重要な機能がそれぞれのネットワークにより調節していることが示されているが、ややこしくなるので割愛する。要するに概日リズムは組織の健康にとって必須にできている。
いずれにせよ、脳と筋肉の概日周期レベルの連結が、筋肉のミトコンドリア活性化などの必須とすると、脳の概日レベルの影響が落ちてくる老人はどうすればいいのか。
これについても考えてくれていて、食べる時間と食べない時間をはっきりさせる、Time restricted feeding により脳のリズムによるコントロールを大分取り戻せることを示して、運動などとともに、fasting を行うことで筋肉老化を防げる可能性を示している。
結局マウスの話で、人間でどうか結論はできないし、またすべてノックアウトマウスの現象論なので、そのまま鵜呑みにはできないが、身体全体の時間調整の重要性はマウスも人間も同じだろう。
2024年5月3日
迷走神経は私たちの体と心をつなぐ重要な神経系として、様々な臓器のホメオスターシスを維持しているのは、つい先日食べ物を見るとインシュリン分泌を誘導して、肝臓のミトコンドリアの変化を誘導するという論文で見たばかりだ(https://aasj.jp/news/watch/24397)。
今日紹介するコロンビア大学からの論文は、特定の臓器だけでなく、体全身の炎症を脳幹の孤束核の細胞が関知し、さらにサイトカインを調節して炎症を抑える役割があることを示した研究で、5月1日 Nature にオンライン掲載された。タイトルは「A body–brain circuit that regulates body inflammatory responses(全身の炎症反応を調節する身体 – 脳回路)」だ。
この研究ではまず LPS を腹腔投与したときの血中サイトカインの動態と、炎症によって刺激される脳幹の細胞を調べている。LPS を投与すると、分単位で IL-6、IL-1、TNFα のような炎症誘導サイトカインとともに、炎症を抑える IL-10 も誘導される。そしてこのとき、孤束核の神経細胞が興奮すること、そしてこれら神経興奮が迷走神経除去で消失することを発見する。
すなわち LPS による炎症反応は迷走神経を通って、脳孤束核の興奮を誘導する。このとき興奮する神経細胞を、興奮により誘導される Fos 遺伝子を遺伝学的にラベルする方法で、特異的に興奮あるいは抑制できるマウスを作成し調べると、抑制すると炎症性のサイトカインの上昇を抑えることができず IL-6 や IL-1 の血中濃度は数倍に上昇する。一方、炎症を抑える IL-10 は発現が抑制される。
逆にこの神経を興奮させると、炎症性サイトカインが抑制され、抗炎症性サイトカインの発現が何倍にも上昇する。実にうまくできている調節系だ。
この反応に関わる細胞を Fos でラベルした後、single cell RNA sequencing を用いて調べると、原則的に興奮神経でドーパミンを合成する DBH 分子を発現する細胞であることを確認する。これに基づいて、DHH を発現する細胞だけを興奮させると、炎症が抑制できることを示している。
次に、迷走神経を刺激する因子について探索し、なんと炎症で誘導される IL-10 に反応する TRPA1 陽性迷走神経システムと、IL-6 などの炎症性サイトカインに反応する CALCA 陽性システムに分かれることを明らかにしている。これも本当かと思うほどうまくできている。
最後にこの炎症を調節する孤束核システムを刺激できるマウスを用いて、致死量の LPS を投与する実験を行い、この経路を独立に刺激することですべてのマウスのサイトカインストームを押さえ、生存ができることを示している。
以上が結果で、孤束核の神経興奮が最終的に炎症調節をおこなうエフェクターメカニズムは不明のままだが、間違いなく脳回路により炎症を抑制することで、我々は炎症が持続しないようバランスをとっていることがわかる、面白い論文だ。もちろんこれらの回路は脳回路だが、意識されることはない。
2024年5月2日
プロスタグランジンE2(PGE2)は炎症メディエーターとして一般の方にも広く知られているが、ガン免疫を抑制する作用が最近注目されるようになった。例えば2022年、医学部で同級だった成宮君の研究室は PGE2 阻害剤の投与によりガン組織で炎症が抑えられるだけでなく、Treg の上昇を抑えることで、ガン免疫が高められることを明らかにしている。
今日紹介するミュンヘン工科大学からの論文は、成宮研と同じ方向の研究だが、阻害剤の代わりにT細胞だけで PGE2/PGE4 のシグナルを受ける受容体をノックアウトして、ガン免疫が高まるメカニズムを解析した研究で、4月24日 Nature にオンライン掲載された。タイトルは「PGE 2 limits effector expansion of tumor infiltrating stem-like CD8 + T cells(PGE2 はガンに浸潤している幹細胞様の CD8T 細胞を増殖させる)」だ。
すでに述べたように研究目的は、PGE2 がガン免疫を抑制するメカニズムを探ることだ。キラーであれ Treg であれ、ガン免疫に関与するのは T細胞なので、すべての T細胞で PGE2 に反応する受容体、PGER2 と PGER4 をノックアウトしたマウスを作成して、メラノーマに対する反応を調べている。
結果は見事で、ガンの増殖をほとんど抑えることができる。しかも、この反応は完全に CD8T 細胞だけで起こっており、CD4TR 細胞を抗体で抑制してもガン免疫は維持される。
この効果のメカニズムを詳しく探っていくと、リンパ節からの細胞のリクルートをブロックしても効果が見られることから、ガン組織の中で起こっている現象と結論できる。Single cell RNA sequencing で T細胞抗原受容体遺伝子と遺伝子発現をパラレルに調べる実験から、CD8T 細胞の中でも TCF1 陽性の自己再生し分化細胞を供給する幹細胞機能を持った T細胞が、ノックアウトマウスでのみ腫瘍組織内で増殖していることが明らかになった。
さらに、腫瘍組織で増殖している CD8T 細胞の遺伝子発現プロファイルから、この増殖を支える因子を IL-2 受容体刺激と特定し、CD8T 細胞を IL-2 で刺激するとき、PGE2 を加えると、IL-2 反応が押さえられること、またこの抑制が PGE2 による IL2γ 受容体の発現抑制によることを明らかにしている。
以上のことをまとめると、PGE2 は TCF1 陽性 CD8T 細胞に作用して IL2γ 受容体の発現を抑えることで、腫瘍内のキラー細胞の増殖分化を押さえているという結論になる。
そこで、最後に卵白アルブミンを導入した腫瘍と、卵白アルブミンペプチドに対する CD8T 細胞をセットにして、ガン免疫反応を単純化した実験系で、担ガンマウスに PGE2 に反応できない CD8T 細胞、あるいは反応でき正常T細胞を移植し、腫瘍内での CD8T 細胞の増殖を調べると PGE2 に反応できないCD8T 細胞だけが腫瘍内で増殖し、腫瘍増殖を抑制することを明らかにしている。
2024年5月1日
脳と身体のつながりは、食事を見るだけでつばが出るといった反応で知られるように、生命維持に最も大事な摂食時の変化がよく研究されている。なかでも視床下部弓状核から分泌される AgRP と POMC は摂食行動だけでなく、肝臓での糖や脂肪代謝の調節に関わるとして知られている。
今日紹介するドイツ・ケルンにあるマックスプランク代謝研究所からの論文は、特に POMC を発現する神経の興奮により起こる肝臓の変化を、特にミトコンドリアに焦点を当て詳しく調べた研究で、4月25日 Science に掲載された。タイトルは「Food perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver(食物の存在を感じると肝臓で MFFS131 がリン酸化されミトコンドリアの断片化が起こる)」だ。
この研究ではマウスを16時間飢餓状態に置いた後、食べ物を見つけても食べられないという状況で、肝臓のミトコンドリア分子のリン酸化パターンの変化を網羅的に追求し、ミトコンドリアの分裂を誘導する MFF 分子の131番目のセリンがリン酸化されることを発見する。
この肝臓での変化が POMC 発現神経の興奮で誘導されることを、この細胞特異的に刺激する光遺伝学で確かめている。驚くことにこのリン酸化反応は食事を見つけたときから5分で始まり、10分でピークになるが、食べられないとわかると低下する。一方、食べ物を与えたグループではそのままのレベルが維持される。すなわち、一種の満足反応が肝臓細胞レベルの、しかもかなり早い反応を引き起こしている。
このときのミトコンドリアの状態を見ると、やはり5分で分裂が始まり、10分ぐらいでピークに達し、これが MFF 分子のリン酸化で調節されていることがわかる。さらに、POMC 神経を光遺伝学的に刺激しても、同じように分裂を誘導できる。
では食べ物を見た時に起こる PMC 神経興奮が、MFF 分子のリン酸化、続くミトコンドリア分裂を誘導するメアニズムは何か?MFF 分子のリン酸化パターンを解析し、インシュリンの下流で働く AKT ではないかと考え、生化学実験、遺伝学的実験によりこれを確かめ、食物を感じる刺激が、AKT のリン酸化を通して、MFF 分子のリン酸化を誘導していることを明らかにする。そして、AKT を活性化するのはインシュリン分泌自体であると結論している。すなわち、POMC 刺激はインシュリン分泌を促し、肝臓細胞を刺激、AKT 依存的ミトコンドリア変化が誘導されることになる。
この論文では POMC 神経反応とインシュリンの関係には踏み込んでいないが、視床下部から直接膵臓への神経支配が存在することが2016年シカゴ大学によって明らかにされており、この経路が動いたと想像する。
2024年4月30日
ビタミンDが免疫を高めるという話はよく耳にするが、ビタミンD (VitD) は核内受容体に結合して様々な分子の転写を誘導することを考えると、別に不思議はないと思っていた。しかし、本当はもっと複雑なメカニズムが介在しているようだ。
今日紹介する英国フランシス・クリック研究所とCancer Research UKからの論文は、VitD は確かにガン免疫を増強するが、これは腸内上皮に対する作用の結果、Bacterioides fragilis と呼ばれる細菌が腸内で増える結果、ガン免疫が増強されるという、大変複雑なメカニズムを示した研究で、4月26日号Science に掲載された。タイトルは「Vitamin D regulates microbiome-dependent cancer immunity(ビタミンDは細菌叢依存性のガン免疫を調節する)」だ。
VitD は血中で Group Specific Component(Gc) と呼ばれるタンパク質と結合し、各組織に運ばれるが、この分子が欠損してもマウスの骨形成は維持されるため、主に VitD が直接細胞に吸収されないよう、バッファーの働きを持っていると考えられている。また他にも、死細胞から放出されたアクチンを処理する機能もあると考えられてきた。
この研究では Gc のガン免疫機能への役割が調べられ、ノックアウトマウスにガンを移植すると、正常マウスと比べ強くガンの増殖が抑えられることを発見する。また、これらの抑制が CD8 キラー細胞の増強によるもので、PD-1 や CTLA4 に対する抗体治療を高めることも明らかにしている。
この研究のハイライトは、Gcノックアウトマウスと正常マウスを同じケージで飼育すると、Gcノックアウトマウスのガン抑制機能が移行することで、便移植でもガン免疫増強作用を移行させられることから、Gc欠損が腸内細菌叢を変化させ、これがガン免疫機能を増強していることを明らかにする。
次にこの現象に VitD は関与しているのか、ノックアウトマウスを VitD 欠乏食で飼育して調べると、ガン抑制効果が失われ、また正常マウスでも高い濃度の VitD を摂取させることでガン抑制作用が上昇することから、VitD がこの現象に関与していること、そして Gc がないと VitD がバッファーされずに直接組織に吸収されるため、結果として高濃度の VitD 摂取と同じ効果があることが明らかになる。
以上から、最終的な VitD の効果は細菌叢を介することから、おそらく細菌叢に近い腸管上皮にまず働きかけ、それが細菌叢の変化を誘導するのではと考え、腸上皮特異的に VitD 受容体をノックアウトしたマウスを作成して調べている。期待通り上にに対する VitD の作用が失われると、高濃度の VitD を摂取させても、ガン免疫は増強されない。
次に、VitD で上皮が刺激されることで起こる細菌叢の変化を様々なフィルターをかけて調べていくと、最終的に Bacterioides fragilis のみ腸内で増加していることを発見する。そして、この菌を正常食で飼育した正常マウスに移植すると、ガン抑制効果が誘導され、この効果は VitD 欠損食で失われることを明らかにしている。
以上、Gc 欠損マウスから始まって、VitD が上皮に働くと腸内環境が変化し、Bacterioides fragilis の増加が可能になり、それが免疫系に働いてガン免疫を増強するという話だ。重要なのは正常マウスに Bacterioides fragilis を感染させてもガン免疫が増強することで、人間でも確認されると面白い。人間のデータベースから VitD 受容体の高い患者さんはガンでの生存確率が高いことや、VitD の低い人のガン発生率の上昇などを示しているが、マウスの結果を反映したものではなく、臨床研究が必要だろう。いずれにせよ、血中カルシウム濃度を上昇させない程度の VitD 摂取は発ガン抑制には効きそうだ。
2024年4月29日
オルガノイド培養は今や様々な臓器に拡大して、これまで実験動物でしかできなかった様々な研究が可能になっている。例えば昨年6月に紹介したように、人間の胃のオルガノイド培養を2年間も維持して、胃ガン発生過程を試験管内で再現した研究には(https://aasj.jp/news/watch/22309)本当に驚いた。
しかし細胞の自己組織化に基づくオルガノイド培養は、実際の組織を完全に反映できていないという批判が続いていた。培養という人工的な技術なら当然の話だが、それを少しでも現実の組織に近づけようとする試みが進んでいる。
今日紹介するスイス・ローザンヌ工科大学からの論文は、ハイドロゲルをデザインし、そこに腸管上皮を並べるミニコロンと呼ぶ培養方法を開発し、single cell level で発ガン過程を追跡できるだけでなく、そこでの細胞の活動が、一般的なオルガノイドより遙かに正常組織に近いことを示した研究で、4月24日 Nature にオンライン掲載された。タイトルは「Spatiotemporally resolved colorectal oncogenesis in mini-colons ex vivo(ミニコロンを用いて空間・時間的に展開した大腸直腸ガン発生過程)」だ。
ミニコロンの作成方法については2020年6月号の Nature に同じグループが発表しており、ハイドロゲルをデザインして、クリプトを持つ腸管をマイクロフルイディックスの中に再構成したシステムで、クリプトには幹細胞と増殖する Transit amplifying population からできている。ただ、絨毛様構造は存在しない。私の説明ではわかりにくいと思うので、百聞は一見にしかず、オープンアクセス論文に掲載されている図1(https://www.nature.com/articles/s41586-024-07330-2/figures/1)を見てイメージをつかんでほしい。
こうして作成した腸管モデルは、1)長期間培養維持が可能、2)幹細胞から分化細胞がリクルートされる幹細胞システムが維持され、3)すべての細胞でのイベントを測定し、また操作可能である、という特徴を有している。
今回はこのモデルを発ガン過程の解明に用いている。光で活性化できる Cre を使って単一細胞レベルで遺伝子の誘導や除去を行う方法を用いて、直腸大腸ガンの発生に必須の Kras 変異、APC 除去、および p53除去を同時に誘導すると、まず細胞の剥離と細胞死が起こり、その後ポリープ様の増殖を示す細胞から、ガンが発生し、結果としてミニコロンの構造が破壊されることを、顕微鏡下で完全に捉えている。さらに、Apc、K-ras、p53 それぞれの遺伝子を別々に誘導または除去する実験から、3つが同時に存在する時にガン性の増殖が起こることを示している。驚くのは、3種類の遺伝条件が同時にそろったとき、細胞の急速な増殖が始まるので、光照射後5日という極めて短いタイミングでみられる点で、異常増殖という観点であれば、ガン化の過程を極めて圧縮して研究できることになる。
ミニコロン由来のガンを、普通のオルガノイドやマウス体内でガン遺伝子セットを誘導したガン細胞とも比較している。まず、普通のオルガノイドで誘導したガン細胞は、増殖因子を培養に加えないと増殖できないが、ミニコロンや体内で誘導したガン細胞では、基本培地のみでガン細胞は増殖できる。
この違いを single cell RNA sequencing で調べると、マウス体内で誘導したガンに匹敵するぐらいのガン細胞多様性をミニコロンは維持する結果、増殖因子を自ら供給できる階層的なガン組織が形成され基本培地だけで増殖できることを明らかにしている。
Single cell RNA sequencing 解析から、ガン組織を形成する幹細胞は活性酸素による細胞死を抑制する GPX2 の発現が強いことが示されたので、この機能を抑制する thiopronin を管腔とは反対の基底膜側から処理すると、ガン性増殖を抑えることができる。
また、大腸ガンの増殖を促進することが知られている細菌叢による胆汁酸代謝物 deoxycholate を管腔側から供すると、ミニコロンでのガン増殖が促進されるが、そこに同じく細菌叢由来のブチル酸を加えるとガン増殖を抑制できることを示し、このミニコロンが様々な用途に使えることを示している。
以上が結果で、2020年に開発されたミニコロンが発ガン過程の解析に有用であることを示し、通常のオルガノイドに代わる方法としてもっと普及させたいと強い意志を述べている。私は自己組織化に頼る方向から人工デザインへという流れは当然だと思っている。
2024年4月28日
騒音は物理的刺激と同時に脳を介する精神的刺激にも転換される。そのため、単純に暴露される音の量で量ることは難しい。これまでも騒音が鳥の生態に及ぼす作用については研究されてきたが、音そのものの質と量が及ぼす影響を調べた研究は多くなかった。
今日紹介するオーストラリアDeakin大学からの論文は、交通騒音の鳥の生態と言うより、生理や生殖に及ぼす影響を調べた研究で、4月24日 Science に掲載された。タイトルは「Pre- and postnatal noise directly impairs avian development, with fitness consequences(ふ化前とふ化後の騒音は鳥の発生に影響して適応を低下させる)」だ。
実験は簡単だけに、説得力は大きい。まず、母親への影響を避けるために、ふ化後常に親を必要としないオーストラリア・フィンチの卵と雛を使って実験している。すなわち、騒音に晒すときには、親はほかの足に映す。
騒音だが、65dbの録音した交通騒音と母親の声を用意している。ふ化前5日間、ふ化後5日間をセットにして、それぞれの録音を4種類の組み合わせで夜通しきかせ、その結果を調べている。この研究のすごいのは、効果を2年後、4年後に実験した個体から生まれた健康な子孫の数で評価している点だ。すなわちまさに進化でのフィットネス、生殖優位性ををテストしている。
結果だが、産む卵の数は交通騒音でも、母親の声でもほとんど違いはない。しかし、卵から正常にふ化する子孫の数となると、ふ化前、ふ化後いずれの場合も交通騒音を聞かせたときは数が減少する。効果としてはふ化前の方が影響大きく、ふ化前、ふ化後両方に交通騒音でさらすと、正常数の半分を切っている。
面白いのは、全く音を聞かさずにふ化前ふ化後5日間過ごした場合も、親の声を聞かせた場合と比べると少しふ化確率が低下することで、ただの音圧ではなく、脳を通した音の影響を調べていることがわかる。
この差の原因を調べる目的で、今度は音を聞かせた個体自体の身体について調べると、騒音を聞かせたグループの初期の成長が抑えられる。ただ、この低下は40日間の間に正常に追いつくことができる。ただ、音を聞かせた個体の血液で調べる、テロメアの長さや、ヘマトクリットは騒音で低下し、さらに40日間でもこの異常はそのまま持続する。
以上が結果で、残念ながらメカニズムは全くわからない。いずれにせよ、ただの音圧で異常が起こるわけではないので、今後脳の認識機構を含めて面白い研究に発展する可能性がある。もちろん世の中への警告としては十分だと思う。