12月7日 まさに遺伝子編集が可能になってきた(12月5日号 Nature掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

12月7日 まさに遺伝子編集が可能になってきた(12月5日号 Nature掲載論文)

2019年12月7日

一般メディアではクリスパー/Casシステムを使えば全て遺伝子編集という話になるが、編集というからには切ったり、貼ったり、あるいは必要な配列を挿入したり、自由自在に遺伝子を変化させる必要がある。それに対して、ちょっとハサミを入れるだけで遺伝子編集と思われてしまうので、正確な知識がない人たちは簡単に遺伝子編集という言葉に騙されてしまう。その結果、将来性のないクリスパーを使った技術に投資させられているケースも目にすることがあり、困ったものだと思う。

結局はどんな変異でも治すことができるかが問題になる。1ベースを変化させる(例えばCからTに変える)などは様々なテクノロジーが開発されているが、対象となる変異は半分に満たない。そのため一定の長さを置き換えてしまうのがいいのだが、その技術として現在利用できるhomology directed repairはどうしてもDNAの両端を切ってしまうので、他の場所での変異を引き起こしやすい。

これに対して今日紹介するハーバード大学からの論文はCas9が標的DNA領域の片方に切れ目を入れたあと、それに相補的なRNAをプライマーとしてデザインしたRNAを鋳型に逆転写させることで、望む遺伝子配列を導入する方法の開発で12月5日号のNatureに掲載された。タイトルは「Search-and-replace genome editing without double-strand breaks or donor DNA(探して置き換える2重鎖切断を必要としないゲノム編集)」だ。

要するに遺伝子クローニングを行うとき私たちが試験管内で行う実験を全て細胞の中でやらせようという発想の研究だ。必要なのはCas9に逆転写酵素を結合させたキメラ分子で、これにより標的の場所に切れ目をいれ、そこからRNA鋳型で逆転写させることを狙っている。これに合わせて、ガイドに用いるRNAも、標的DNAと結合する相補的配列、Cas9と結合する配列とともに、切れ目を入れた3‘端のDNAと相補的に結合して逆転写酵素のプライマーとして働くサイトと、編集後の配列を持つRNA鋳型が結合した少し長いRNAが必要になる。

その後ホストのシステムをうまく使って、編集した側のDNA鎖のみが残るように修復が起これば、ある程度の長さを自由自在に編集し直せることになる。

ただ構想はできても、実際のシステムを組み上げるには様々な改良が必要で、レトロウイルス由来逆転写酵素をCas9のC末につけたほうが良いとか、さらには温度耐性、鋳型への親和性、あるいはRNA分解酵素不活化活性などを変化させた19種類の逆転写酵素を作成し、最初編集効率が5%以下だった方法を10%以上に高めている。

次に、ガイド、Cas9結合、プライマー、鋳型の4役をもつRNAも細かく調整している。さらに、最後の修復時に編集した側のDNA鎖が残るように、編集しない方のDNA鎖に切れ目を入れてしまうようなCas9を使って、バージョン3では、ほぼ望む全てのタイプの書き換えを50%近い確率で可能にしている。

本当にDNA編集が近づいてくると言う実感が持てる結果だが、まだまだ様々な問題を抱えており、正常細胞の編集への道のりは簡単ではないだろう。しかし、方法は決定されたので、後は改良あるのみだと思う。当面はES細胞や動物卵での遺伝子編集を目標に開発が進む。

このようにこの分野の進展は早い。一方ほとんどの人はこのスピードについていけない。その結果クリスパーという言葉だけに惑わされて、技術を売り込まれてしまう。この技術は大丈夫かと気になって目利きが必要なら、いつでも相談は受け付ける。

カテゴリ:論文ウォッチ

12月6日 非アルコール性脂肪肝(NASH)治療剤 (11月27日号Science Translational Medicine掲載論文)

2019年12月6日

NASHは脂肪代謝の変化により肝臓の脂肪化が急速に進む病気で、他の肝炎と同じように肝硬変や肝ガンへと進展する危険を孕む病気だ。この脂肪代謝の変化を抑える可能性として、Triacylglycerol合成の最終ステップに関わる酵素diacylglycerol acyltransferase (DGAT)抑制が効果があるのではと考え、阻害剤の開発が続いている。これまでDGAT1の阻害剤は臨床治験にまで到達したが、消化器症状が強くそれ以上進んでいない。これはDGAT1の基質特異性や組織発現の問題と考えられ、より強いDGA特異性を持つDGAT2阻害剤の開発が進められ、ファイザーはPF-06427878(PFと略す)という化合物を開発した。

今日紹介するファイザー社研究所からの論文はこの化合物の全臨床実験から第1相の治験までの結果をまとめたもので11月27日のScience Translational Medicineに掲載された。タイトルは「Targeting diacylglycerol acyltransferase 2 for the treatment of nonalcoholic steatohepatitis (Diacylglycerol acyltransferase 2阻害によるNASH治療)」だ。

ファイザーの研究所からの論文だけあって、創薬のプロセスがよくわかる。最初からDGAT2という標的とそれに対する阻害剤が存在しており、この効果を臨床まで順番に見ていくことになる。

試験管内での酵素活性阻害効果確認の後は、肝臓細胞を使ってトライグリセライド(TG)合成阻害を11nM程度で抑制することを示し、ラットを用いた試験に移る。予想通り西欧型食事を摂取させたラットでも血中TGの低下を誘導することが確認される。それだけではなく、おそらくDAG合成が阻害されることで、脂肪合成全体に影響が見られる。実際、肝臓で脂肪合成を調節する転写因子SREBP1の発現を高脂肪食ラットで調べると、発現が正常化することも確認される。

この結果を受けて次にNASHモデルマウスを用いてこの化合物を投与すると、脂肪肝を元に戻すことができるだけでなく、炎症や繊維化を防ぐことができる。すなわち脂肪代謝を正常化することで、それによる肝臓細胞への刺激を抑えて炎症を止める。

つぎにサルを用いて毒性テストを行い。高い濃度でもほとんど毒性がないことを確認して、第1相の臨床テストに写っている。39人の正常人に様々な用量を経口投与し、2週間目の副作用を調べたところ、はっきりしたものは認められなかったが、心拍数の増加が見られた。

つぎに正常人の肝機能を調べると、GOTやGPTの値が低下するとともに、ALPも低下が見られた。ただ、有意差がない程度の低下。またTGの低下についてははっきりと認められなかった。特に、MRIを用いた肝臓脂肪の検査で、31%の低下がみられ、期待が膨らんだ。

というところで、この研究は終わっている。そしてディスカンションで、この化合物はまだ完全に至適化できておらず、慢性投与に向かないという一言で終わってしまっている。

従って、DGAT2を標的にした創薬可能性については明確だが、薬はまだできていないという結果になる。結局、論文を書いて終わろうといった感じだが、ちょっと拍子抜けだ。しかしぜひ至適化された化合物まで、どこでもいいので作って欲しい。

カテゴリ:論文ウォッチ

12月5日 言語誕生過程を研究できるか(米国アカデミー紀要オンライン版掲載論文)

2019年12月5日

この2日に母が急死し、今日の葬儀を前に10年間やりとりしたメールを読み返していると、2年ほど前から言葉が崩壊していく様子が、言葉による会話を通してより強く感じられる。自分の言葉もいつか崩壊するのだろうかなどと考えながら、今日も論文紹介しようと朝早く探していると、言語誕生を扱ったライプチヒのトマセロさんのグループの論文が目についたので紹介することにした。タイトルは「Young children spontaneously recreate core properties of language in a new modality (小児には言語の基本性質を異なる方法で自然に作り直す能力がある)」で、米国アカデミー紀要オンライン版に掲載された。

ニカラグアで両親から遺棄されストリートチルドレンとして生活していた聾唖の子供を養育する施設ができ、そこで暮らす子供の数が増えていくにつれて、自然に皆が同じ手話を使うようになったという発見は、言語誕生に関する最も重要な発見として現在もニカラグアの手話として研究されている。ニカラグアの手話だけではなく、聾唖の発生率の高いベドウィンや奄美の村で自然発生した手話も知られており、社会生活に必要な言語を発生させる能力が人間には備わっていることの証拠として考えられてきた。ただ、これらはすべて手話が発生した後の結果を追いかけるもので、最初どのようにその手話が発生するかについては全くわかっていなかった。

これに対し、トマセロさんたちは子供同士に言語を介さない(離れた部屋でビデオモニターを通して相互に全身は観察できるが、音による交流は完全に遮断した状況)で、単語や文を相手に伝える遊びを行わせる中で、その際に生まれてくるジェスチャーによるコミュニケーション手段を詳しく分析するという実験を思いついた。

ニカラグアの言語はずいぶん昔に発見されていたのに、なぜこのような実験ができなかったのか不思議だが、おそらくすでに言語体験を持っている小児を使って実験を行っても、あまり信用されないと思ったのではないだろうか。しかしトマセロさんたちはこんな問題を意に介さず、言語の構造を考えるときに重要なポイントに絞って、子供同士のジェスチャーによるコミュニケーションを分析している。

結論を言ってしまうと、少なくとも6歳になると簡単な文章を伝えるジェスチャーによる言語を新たに作り出す能力があることがわかった。

最初は形態を模したイコンを用いて会話を始めることができる。その後、例えば大きいとか、幾つとか、もう少し抽象的な概念も表現するジェスチャーによって表現するようになる。こうして考案されたジェスチャーは相手にすぐに理解され、一旦それが使われ始まると、今度は相手もそれを使うようになる。また、最初はすべてイコン的ジェスチャーを用いて行われる表現も、徐々にシンボルに置き換えられて、単純なジェスチャーの組み合わせで多くのことを表現できるようになる。この合意が成立すると、今度は複雑な文章を、各要素に区切って(すなわち「大きな」「象」が「いる」といった単語からなる構造)、しかも文法的に表現するようになる。要するに私たちが言語と呼んでいるほとんどの性質が短い間に考案される。とはいえ、対象に選んだドイツ人の子供の頭の中にある文法構造とは全く無関係の構造で、言語体験とは関係なく構造化されると結論している(もちろんもっと検証が必要だと思う)。

最も重要な観察は、イコンを用いた表現を単純なシンボルへと変える力は、その単語を使う頻度で、表現にかかる時間を減らすために、イコンがシンボルへと変わっていく。

他にも、同じ形容詞でも大きさを表す時の方がジェスチャーを区切って表現することなど面白い発見があるが、詳細は省くことにする。

言語誕生についての研究は21世紀の代々の課題だ。是非多くの若者にチャレンジしてほしい分野だ。このホームページでも、言語誕生について少し長い文章を書いて掲載しているので是非何かの参考にしてほしい(http://aasj.jp/news/lifescience-current/10954)。

個人的には、母のメールを分析して、言語能力の崩壊について考えてみたいと考えている。

カテゴリ:論文ウォッチ

12月4日 RNA分解産物により自然免疫が誘導される経路(11月27日号Cell掲載論文)

2019年12月4日

私が免疫学に強い興味を持った頃、自然免疫という概念はなかった。しかし動物を免疫するとき、あるいはワクチン接種により高い免疫反応を誘導するには必ずアジュバントが必要なことはわかっていた。その後、このアジュバント効果こそが、自然免疫により誘導される局所炎症であることがわかった。この概念を最初に私に教えてくれたのは脳腫瘍で亡くなったJannewayだが、その後この経路に関わるメカニズムの解明は急速に進み、阪大の審良さんや、東大の三宅さんなどを中心に、我が国はこの研究分野をリードしてきた。特にこの二人は、自然免疫システムが刺激される入り口、TLRやMyd88の機能研究で大きな貢献をしており、私も自然免疫というと、これらの分子から、NFkBへの経路をすぐに頭に浮かべることができる。

しかしそれぞれのTLRがどのようにリガンドを認識するのか、これは難しい問題だ。特にRNAウイルスなどを認識するシステムの場合、細胞の中に存在するRNAとどう区別するのか理解する必要がある。また、これが理解されると、新しいアジュバントを開発することができる。

今日紹介するドイツ・ミュンヘンのルードビヒ・マクシミリアン大学からの論文はTLR8を刺激する条件について明らかにした研究で11月27日号のCellに掲載された。タイトルは「TLR8 Is a Sensor of RNase T2 Degradation Products (TLR8はRNaseT2の分解産物のセンサーとして働く)」だ。

RNAが分解された産物を認識するシステムにはTLR7とTLR8が知られているが、TLR7に比してTLR8については研究は進んでいなかったようで、確かに私もあまり論文を読んだ記憶がない。この研究では両方のTLRを発現する白血球細胞株を選んで、それぞれの分子をノックアウトし、まずオリゴヌクレオチド(ON)RNA40がTLR8特異的刺激を誘導できることを確認する。

次に、多くのRNaseを検討し、ついにRNaseT2がRNA40を分解した時だけTLR8が活性化されることを発見する。この発見が研究のハイライトで、あとはTLR8を刺激できる分解産物の特定を行い、刺激に至るプロセスを一歩一歩生化学的に解明している力作といえる。

詳細なデータ紹介は省いて、現れてきたシナリオだけを紹介すると次のようになる。

例えばバクテリアが細胞内に侵入すると細菌はリソゾームで分解されるが、それが合成しているRNAはリソゾーム内のRNaseT2により、プリンとウリジン(U)の配列部位で切断し、5‘端にUを持つオリゴヌクレオチドと反対側の3’プリン基に環状フォスフェートを持つオリゴヌクレオチドを生成する。

この環状フォスフェートを持つオリゴヌクレオチドがまずTLR8に結合するが、これだけでは刺激としては不十分で、これにウリジンが供給されるとスイッチが入るという仕組みだ。このとき必要なウリジンも、RNaseT2により切断されたもう一方のオリゴヌクレオチドの端末から供給されるので、結局RNaseT2はTLR8の刺激に必要なすべてのリガンドを供給することになる。

以上がシナリオだが、RNAの生化学の高い能力と免疫学が合体して可能な、面白い研究で勉強したという気になった。このRNaseの遺伝変異によりウイルスに対する抵抗の欠如とともに、これと相反する自己免疫性炎症が発生するという面白い現象も存在するようで、私たちがアジュバントとして片付けていた現象が、本当に大きな世界へと広がっていることを感じさせる。

カテゴリ:論文ウォッチ

12月3日 糸球体濾過率測定にはシスタチンC測定の方が優れている(11月号Nature Medicine掲載論文)

2019年12月3日

慢性の腎臓病を総称してCKDと呼んでいるが、その指標として重要なのは腎臓の濾過率で、現在ではeGFRとして血中クレアチニン濃度から計算している。私も年齢とともに低下し、ちょうど60ぐらいになっており、少し気にしている。実際、45を切ると、心血管障害や腎不全に陥る確率がぐんとあがる。ただ、クレアチニンは筋肉由来のため、どうしても筋肉の状態に左右されるため、完全に腎臓の濾過率を反映するのは難しいと考えられていた。

これを解決する検査として開発されたのがシスタチンCの濃度をクレアチンの代わりに使う方法で、体のすべての細胞から産生されるため、安定した指標になると考えられ、保険も適応になっている。ただ、クレアチニンと比べると検査料は高い。

今日紹介するグラスゴー大学からの論文はUKバイオバンクに登録された人の検査記録と死亡率、あるいは心血管系の発作や腎不全の発生を追跡し、シスタチンCを用いる検査の優位性を示した研究でNature Medicine 11月号に掲載された。タイトルは「Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease (糸球体濾過率測定方法、タンパク尿、そして心血管病、死亡率、腎不全の予測)」だ。

研究ではUKバイオバンクから44万人を抽出し、クレアチンによるGFR算出、シスタチンによるGFR算出とともにタンパク尿の有無などを調べ、その結果と心血管病の発症頻度、末期の腎不全の発症頻度、および理由を問わない死亡率を調べ、それぞれの検査がこれらのリスクをどの程度予測できるか調べている。

さて結果だが、もちろんクレアチニンによるeGFR数値は死亡率や、心臓病の発生率と逆比例し、検査自体は有効であることがわかる。しかし、綺麗に逆比例するというより、カーブは蛇行している。

一方、シスタチンCを用いて同じように死亡率、心臓血管病の発症率、そして末期の腎不全発症率との相関を調べると、ほぼ直線の逆比例関係が見られ、正確にリスクを予想するには圧倒的にシスタチンCを用いる方がいいことが明らかになった。

他にも、両方の検査方法を合わせてみた時、あるいは蛋白尿を合わせてみた時、よりリスク計算が正確になるかも調べているが、あまり効果はない。

以上の結果から、シスタチンCの検査はコストが高いが(実際我が国では1200円ほどで、クレアチニン検査より10倍高い)、それに見合うだけの正確性があるという結論になる。 この結果はすでに何度も指摘されてきたが、UKバイオバンクという驚くべきダータベースのおかげで、間違いないことが完全に確認されたと思う。臨床医にとっては重要な研究で、おそらく健康診断でも標準になっていくような気がする。

カテゴリ:論文ウォッチ

12月2日 胚選択で優れた子供を選択するのは難しい(11月27日号Cell掲載論文)

2019年12月2日

先日ゲノム情報からデニソーワ人の骨格を推察する研究を紹介したが(http://aasj.jp/news/watch/11407)、本当に可能かという疑問は残るにしても、メンデル以来続いてきた遺伝学が全く新しい方向に進み始めたことを感じる。

これはイスラエルの仕事だったが、ゲノムから形質を予想する情報処理法の開発にイスラエルが力を入れているなと感じさせる研究が同じヘブライ大学から発表された。タイトルは「Screening Human Embryos for Polygenic Traits Has Limited Utility(複数の遺伝子が関わる性質を胚選択で達成するには限界がある)」で、夫婦が少しでも優れた子供を産むため、10個の胚の中から一番いい形質を持った胚を選ぶことができるかという問題を扱っている。

はっきり言って、この問題をシミュレーションで調べようと思いついた着想がこの研究のすべてで、あとは情報処理といってCellに掲載されるほどの新規性はほとんどないのではないかと思う(といっても数理については私は全く理解できていないので、そのつもりで読んでいってほしい)。

現在米国でなんらかの遺伝子解析を受けた人が2000万人を越したそうだが、100万を越すデータが集まり始めると、ゲノムから身長やIQを推察するための方法開発が加速している。この計算のために最もよく用いられるのがpolygenic score(PS)で、NBAのバスケットプレイヤーの一人の身長の高さが遺伝要因であることを示すことができている。また、掛け合わせのつがいを自由に選べる育種でも、PSは重要な指標として用いられている。

ただ、人間の場合子供は子供のために自由に生殖相手を選ぶというわけにはいかない。そのため、夫婦からできるだけ多くの受精卵を採取してゲノムを解析、その中でPSができるだけ高い胚を選ぶ方法が考えられる。この研究では、この方法でどの程度の期待する形質が得られるか、完全にゲノム解析が行われている102組の夫婦のコホートデータを用いてシミュレーションした研究だ。

通常体外受精の場合3−4個の胚が作られるが、この研究では10個の胚から選択するという状況で、身長とIQについて胚選択でどこまで高い子供を選択できるか計算している。

これは各夫婦がどPSに関わる多型をどれだけ持っているかに関わるが、多くの多型を選ぶことができて10個の胚を選択する場合でも、身長で3cm、IQで3ポイントあがるのがやっとであることを示している。さらに、選べる胚をさらに増やした場合の計算もしているが、だいたい15個でプラトーに達する。

結論はこれだけだが、これが正しいかどうかすでに子供が成長した28組の大家族で調べて、身長の違いを予測することは難しいことを示している。

もちろんさらに予測に使える多型が増えていくことも考えられるが、結局望む形質を選ぶ目的に胚選択は意味がないという結論になる。なるほどと納得する研究だが、考えてみると当たり前の話で、一般の人たちの倫理観の隙間をうまく利用して論文に仕上げただけの研究だと思う。とはいえ、このようなしたたかさの研究を繰り返す中で、ゲノムから形質を正確に予測する方法が開発されていく。研究にはコンピュータ以外必要ないので、ぜひ多くの若者にチャレンジしてほしいと思う。

カテゴリ:論文ウォッチ

12月1日 ちょっと意外なジョギングの効果 (Nature Medicine11月号掲載論文)

2019年12月1日

最近報告されたバージニア大学からの論文は、身に着けるセンサーを用いて毎日の運動を測定し、運動と死亡率を調べたコホート研究だが、日常の運動量が長生きに重要なことを明確に示している (Smimova et al, Journal of Gerontology: doi:10.1093/gerona/glz193 )。しかし、なぜ動脈硬化を防ぎ、長生きにつながるのか、代謝システムのリモデリングを誘導するという以外にメカニズムを創造することは簡単でない。

今日紹介するハーバード大学からの論文はマウスを用いて運動が血液幹細胞の増殖を調節することで慢性炎症を防いでいるという意外な結果を示した論文でNature Medicine 11月号に掲載された。タイトルは「Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells (運動は血液前駆細胞を調節することで炎症細胞の産生と心臓血管系の炎症を抑える)」だ。

この研究ではマウスの飼育環境にホリールランニングをおいて、自由に楽しんで運動を促している。すると、6週間後には食事の量は増えても体重は低下する。この条件で、炎症に関わる様々な条件を調べると、なんと血液幹細胞の数が低下し、その結果炎症に関わる白血球の数が低下することを発見する。

この原因を突き詰めていくと、脂肪細胞が運動で低下することで、脂肪細胞が分泌するレプチンが低下し、これが血液細胞の微小環境に働いて血液幹細胞を静止期に止めることを突き止める。また、レプチンは血液微小環境のケモカインCXCL12の発現を高めることでこの効果を発揮していることも確かめている。

運動、脂肪細胞減少、レプチン減少、微小環境でのCXCL12発現上昇は、血液幹細胞に一時的な変化だけではなく数週間続く変化を誘導するが、これは多くの遺伝子のプロモーターのクロマチン構造が閉鎖型に変化することによることを示している。

こうして生まれた白血球のリクルート率の低下の効果を調べるため、まず急性の敗血症を誘導する実験を行うと、白血球の動員が少ないおかげでマウスの生存が維持される。またレプチンのシグナルを遺伝的にブロックして血液の産生を低下させると、動脈硬化になりにくく、また心筋梗塞の程度が低くなることを示している。

最後に心筋梗塞経験者のコホート研究の参加者の好中球の数と、レプチン濃度を調べ、週に2−5時間の運動を続けている人の白血球数やレプチン濃度が、運動しない人より低いことを示して、マウスの結果が人にも当てはまることを示している。

以上が結果で、少なくとも私にとっては意外なメカニズムだった。私もできるだけ歩くように心がけてはいるが、もし運動の効果がレプチンを介しているとすると、運動しても内臓脂肪が落ちていない私では、この研究で示されたメカニズムは動いていないと思った方が良さそうだ。

カテゴリ:論文ウォッチ

11月30日 GPR146は動脈硬化防止の標的になるか?(11月27日号 Cell掲載論文)

2019年11月30日

20世紀の終わり、ヒトゲノムが解読されつつある時、様々な病気と相関がある遺伝子多型のリストが急速に拡大した。このトレンドは、最近の公的バンクの整備により100万を超える対象を調べられるようになると、さらに加速している。ただ問題は、多型を分子機能と対応させるためには、動物実験も含めた丹念な実験が必要で、多型解析の成果を臨床に生かすまでの道は長い。

今日紹介するハーバード大学からの論文は高脂血症に相関づけられていたGタンパク質共役型受容体GPR146がコレステロールの分泌に関わることを突き止めた研究で11月27日のCellに掲載された。タイトルは「GPR146 Deficiency Protects against Hypercholesterolemia and Atherosclerosis(GPR146の欠損は高コレステロール血症と動脈硬化を防止する)」だ。

この研究は血中コレステロールの濃度と関連するrs11761941の下流に存在する遺伝子が薬剤の開発が可能なGタンパク質共役型の受容体GPR146であることに気づき、これが高脂血症治療の治療標的になるのではと着想する。

この可能性を確かめるため、まずGPR146が欠損したマウスを作成すると、HDL, IDL/LDL,及びVLDLと全てのコレステロールレベルが低下することがわかった。すなわち、コレステロールを下げるという意味では、新しい創薬ターゲットになる。

あとはメカニズムを詳しく調べているが、簡単に想像される経路はほとんどノックアウトで影響されず、解明に結構時間がかかったようだ。しかしともかく、細胞レベル、及び個体レベルで納得いく経路を特定している。それをまとめると次のようになる。

まずこの受容体が刺激されると、ERK1/2分子を介して細胞内のコレステロールを感知する転写因子SREBP2を活性化、SREBP2が核に移行してコレステロール代謝酵素などの転写を高め、最終的にVLDL分泌上昇、高コレステロール血症が起こるというシナリオだ。すなわち、コレステロールの代謝経路に関わる分子の転写調節の核と言えるSREBP2の活性をさらにチューニングするシステムであることを明らかにしている。

またLDL受容体が欠損したマウスで起こる動脈硬化を防止できることも示しており、この受容体が高脂血症治療の重要な標的になりうることを示唆している。

結果は以上で、多型解析の結果を創薬などと結びつける研究がようやく進み始めたことを実感させる研究だ。ただ、結局この下流にスタチンのターゲットであるHMGCRも存在しており、これを超える安全な化合物を開発できるかはまだまだ予想できないように思える。少し様子を見よう。

カテゴリ:論文ウォッチ

11月29日 胆汁由来代謝物が免疫系を調節する(11月27日号Natureオンライン掲載論文)

2019年11月29日

免疫システムの調節に関わる腸内細菌の重要性は、無菌マウスに特定の細菌を丹念に移植して免疫を調べる研究からかなり明らかになっている。この細菌の中には、自ら発現する分子や構造で直接ホストの細胞に作用を及ぼすものもあるが、腸内で様々な代謝物を生成し、これを通してホストの免疫系に作用するものもある。なかでも、脂肪の消化を助ける胆汁酸はコレステロール由来の分子で、これが細菌により変化させられると、様々な生理作用が生まれることが知られている。

今日紹介するハーバード大学とニューヨーク大学からの論文は胆汁由来の化合物をスクリーニングして炎症に関わるTh17と免疫制御にかかわるTreg細胞の機能を調節する化合物を発見した研究で11月27日号のNatureオンライン版に掲載された。タイトルは、「Bile acid metabolites control T H 17 and T reg cell differentiation (胆汁酸の代謝物はTH17とTreg細胞分化を調節する)」だ。 

もともと共著者の一人でこの分野の第一人者Dan Littmanは2011年に強心剤として知られるジゴキシンがTh17の発生を調節するRORγ分子を阻害するという発見を報告していた。今回の研究はジゴキシンが胆汁酸と同じようにステロール核を持つ化合物であるということから、胆汁酸由来代謝物が腸内の免疫反応を変化させているのではと着想したことに始まる。

全部で30種類の胆汁酸由来代謝物をあつめ、CD4T細胞がTh17 及びTregへと分化する培養系に加える実験を行い、3-Oxo-lithocholic acid(LCA)とisoalloLCAがそれぞれ、Th17分化抑制、Treg細胞分化促進活性があることを発見する。この発見がこの研究のハイライトで、胆汁酸が代謝物を通して重要なT細胞サブセット分化を強く変化させられることを示した。

あとはメカニズムと、生体内での機能を調べるだけだが、まずOxoLCAはRORγ分子機能を直接阻害し、Th17分化を抑えることを示している。

一方isoalloLCAの作用メカニズムは簡単ではなく、Foxp3分子の転写を促進してTregを増やすが、作用はミトコンドリアの活性化酸素の合成を高め、これがFoxP3のエピジェネティックな調節を介してFoxP3の発現量を上昇させ、Treg分化を促進すると結論している。

最後に、これらの代謝物が実際に腸内の免疫機能を直接変化させられるかどうかをマウスに炎症を誘導する実験系で調べ、期待通り、

1)3-oxo-LCAはTh17の分化を抑制し、炎症を抑える。

2)3-oxo-LCAとisoalloLCAを同時投与するとTreg の量を高められること。

を示している。

以上が結果で、胆汁酸由来の代謝物のちょっとした変化で、免疫システムのバランスが変化してしまう可能性を示している。今後、これらの物質と腸内での免疫状態との相関が明らかになると、検査の指標や治療に役に立つ可能性が出てくると思う。特に重要なのは、この効果には、腸内細菌叢は必要ないことで、Th17、Tregという最も重要な細胞を直接操作する方法が開発できるのではと期待される。

カテゴリ:論文ウォッチ

11月28日オメガ脂肪酸は前脂肪細胞の増殖を誘導する(11月27日号Cell掲載論文)

2019年11月28日

オメガ脂肪酸は発生期の神経発達に欠かせない脂肪酸で、さらに脂肪へのブドウ糖の吸収を高めてインシュリン感受性を上昇させる重要な物質で、ポピュラーなサプリメントの一つだ。しかし、これが脂肪細胞の数を増やすと言われると「え!」と驚いてしまうが、実際にはどうなんだろう。

今日紹介するスタンフォード大学からの論文は、オメガ脂肪酸が繊毛に発現しているFFAR4受容体を刺激し白色脂肪細胞を増やすことを示した研究で11月27日号のCellに掲載されている。タイトルは「Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis (オメガ3脂肪酸は繊毛のFFAR4を活性化して脂肪生成を制御する)」だ。

この研究は最初からオメガ脂肪酸の作用を調べるというより、意外なことに脂肪細胞に分化する前脂肪細胞に繊毛を持っていることに気づいた著者らが、繊毛の機能を調べようと始めた研究のように思う。私たちも前脂肪細胞株を樹立し、長く付き合ったが、繊毛が生えているとは考えもしなかった。前脂肪細胞株を繊毛のみに発現する分子マーカーで染色すると、8割ほどの細胞に繊毛が認められ、増殖中、あるいは白色脂肪細胞へと分化が進むと繊毛は失われる。

では前脂肪細胞がなぜわざわざ繊毛を発現しているのか。この機能を確かめるため、前脂肪細胞で繊毛が形成できなくしたマウスを作成すると、体重の伸びが早い段階で頭打ちになり、調べるとほとんどが脂肪組織の量が減るためであることがわかった。すなわち、繊毛が前脂肪細胞の増殖と脂肪組織の形成に必須であることがわかる。とはいえ、脂肪代謝自体は大きく変化はないので、悪性の脂肪組織生成とは異なっている。

では繊毛にはどのような分子が発現しているのか?遺伝子発現と繊毛の有無を関連させて、FFAR4が繊毛特異的に発現しているGタンパク質共役型受容体であることを発見する。この受容体は、オメガ3脂肪酸で活性化されることがわかっているので、前脂肪細胞株をオメガ脂肪酸で刺激すると、期待通り前脂肪細胞の増殖が高まり脂肪生成が起こる。また、高脂肪食とオメガ脂肪酸を投与された若いマウスの体重は高脂肪食だけを与えた群と比べると30%以上増加する。このことから、繊毛のFFAR4を介してオメガ脂肪酸は前脂肪細胞の増殖を誘導し、これが高脂肪食に反応すると肥満を起こすことがわかった。

ただ、オメガ脂肪酸は直接脂肪の蓄積には関わらないようで、実際このシグナルではPPARなどの脂肪蓄積に関わる分子の発現はあまり上昇せず、実際には染色体の構造化に関わるCTCFの発現制御を通して、遺伝子をオープンにすることがオメガ脂肪酸の作用であることを示している。

以上が結果だが、ではオメガ脂肪酸を摂取すると太るのか?答えはYes/No(ドイツ語ではJainという)で、前脂肪組織の増殖を促すという点では太る可能性をあげるが、脂肪蓄積のスイッチを入れるのは高脂肪食など別の経路で、オメガ脂肪酸自体はインシュリン抵抗性も軽減するので、やっぱり健康には大事という結論になる。ご安心を。

カテゴリ:論文ウォッチ
2019年12月
« 11月  
 1
2345678
9101112131415
16171819202122
23242526272829
3031