12月16日:悪性黒色腫の根治を目指す(2015年1月12日号Cancer Cell掲載論文)
AASJホームページ > 新着情報

12月16日:悪性黒色腫の根治を目指す(2015年1月12日号Cancer Cell掲載論文)

2014年12月16日
SNSシェア

悪性黒色腫(メラノーマ)の半数以上がBRAFと呼ばれるシグナル分子の特定の突然変異によることが明らかになってから、この腫瘍の治療は急速に進んだ。突然変異型のBRAFを標的にした治療、さらにBRAFの下流で働いている分子MEKを標的にした治療のおかげで、これまで治療が困難だったステージのメラノーマも治療が可能になった。しかしメラノーマはしぶとい腫瘍だ。治療を続けるうち、ほとんどの患者さんでこれら標的薬に抵抗する薬剤耐性腫瘍が発生してくる。BRAFとMEKの両方を同時に叩く治療ではより高い効果があるが、それでも1年ぐらいで薬剤耐性の腫瘍細胞が発生し、根治を阻む。標的薬に対する耐性腫瘍の問題はメラノーマだけの問題ではない。ガンのゲノムに基づく標的療法が進展すればするほど、重要な問題になってくる。今日紹介するマンチェスターにある英国癌研究所からの論文は、従来のメラノーマ治療の問題を一挙に解決したと大きな期待がかけられている研究で、2015年1月12日号のCancer Cell誌に掲載された。タイトルは「Paradox-breaking RAF inhibitors that also target src are effective in drug-resistant BRAF mutant melanoma(パラドックスを破るRAF阻害剤はsrcも標的にしており薬剤耐性になったBRAF突然変異メラノーマに効果がある)」だ。この研究のポイントは、タイトルにあるパラドックスを破るRAF阻害剤という言葉で表現されている。変異型BRAFに対する耐性はしばしばRAS突然変異が新たに生じることで獲得される。この時、BRAFで活性化される下流のMEKは標的薬で活性が落ちるのだが、同じ細胞でRASが活性化すると、今度は同じ標的薬がMEKの活性を上げてしまうことがわかってきた。このメカニズムも理解がすすんでおり、BRAFとCRAFの2量体形成を薬剤が促進することが原因だ。この同じ薬剤が、同じシグナル分子を一方では抑制しながら、同時に促進するという現象がパラドックスで、今回開発されたCRAFをBRAFと同時に抑制できる薬剤は、パラドックスを発生させない。さらに新しい薬剤には、耐性のもう一つの原因であるSRC分子の活性化も同時に抑制する効果がある。すなわち、BRAFだけでなく、CRAF,SRCに渡る広い特異性を持つ薬剤だ。広い特異性と聞くと、なるほどと思うのだが、逆に正常分子も阻害して多くの副作用の原因になることが多い。この研究では、1)新しい薬剤が、治療により耐性を獲得したメラノーマに有効か、2)パラドックスを抑えているか、3)広い特異性による副作用がないか、の3点に絞って調べている。結果は有望で、マウスの実験だが長期投与でも目立った副作用はない。また、薬剤耐性を獲得した臨床サンプルの増殖をほぼ完璧に阻害できる。期待通り、これまでの薬剤のようにパラドックスが発生することはない。詳細は割愛するが、読んだところ前臨床は期待通りに終了したという結果だ。論文でもアナウンスされているが、この結果を受けて、来年には第1相臨床試験に進むようだ。臨床試験が期待通りなら、おそらくこの薬剤は従来の標的薬に代わって最初に選択される薬剤になる可能性が高いのではないだろうか。医療経済的な問題もあるだろうが、癌治療の目標は根治だ。この場合、できる限り再発のない薬剤を最初から選ぶことが重要になる。今日紹介した薬剤の最初の治験では、薬剤耐性になったメラノーマが対象になるだろうが、できる限り早い段階でファーストラインの薬剤としての実力を比べて欲しいと思う。製薬業界にとってはしんどい話だろうが、ここは患者さんの側に立った根治を目指す治療確立を目指して競争が続くことを願っている。

カテゴリ:論文ウォッチ

12月15日:トンボの予測能力(Natureオンライン版掲載論文)

2014年12月15日
SNSシェア

バイオミメティクス領域でトンボから習いたいということは多い。羽ばたいて飛んだかと思うと、グライダーのように滑空し、ヘリコプターのようにホーバリングしているかと思うと、とんぼ返りして素早く飛び去る。トンボとりで苦労した経験のある人はその飛翔能力の高さに驚嘆したはずだ。これを真似たロボットが開発され、YouTubeで見ることができ、すでに100万回近くアクセスがあるようだ (https://www.youtube.com/watch?v=nj1yhz5io20)。しかし今日紹介するのはトンボの飛翔能力の話ではなく、トンボの脳の予測能力についての論文で、バージニア大学から発表された。タイトルは「Internal models direct dragonfly interception steering (トンボの餌に対する攻撃を内部モデルがコントロールしている)」だ。この論文で答えたかった疑問は、「エサを取るときのトンボの飛翔は、餌からのインプットに反応して調節されるのか、それとも高次中枢機能を有する動物のようにすでにある内部イメージにより調節されるのか?」だ。これまで昆虫の飛翔はミサイルの追尾システムのように、対象の動きに反応的に行われていると考えれていたようだが、そこに著者らは疑問を持った。高速度カメラでトンボの餌とりを撮影してみると、対象に合わせてナビゲーションが起こるのは餌とりの最後の瞬間だけで、餌を感知して飛び出してからかなり長い時間、対象との角度はまちまちで定まっていない。したがって、ミサイルの誘導装置のような仕組みではなさそうだ。考えてみると、餌の方も必死だ。逃げるために当然予想外の行動をとる。それにどう対応しているのか調べるために、トンボの頭と胴体に小さな印をつけ、撮影しながら、餌、胴体、頭の動きを記録し、どう体を調整し、どのぐらいの速さで調整が可能かを調べている。この結果、トンボが餌を追うときは、体の向きは後回しにして、まず目を餌の方に固定するように頭を動かし餌のイメージの振れを抑えていることがわかった。一方体は頭の角度に合わせて機械的に決められる。すなわち、考えなくとも目と体が一定のアルゴリズムで機械的に一体化されているため、飛翔方向が機械的に決まり、これが素早い飛翔調節を可能にしているという結論だ。しかしこれだけだと機械的な制限はあるにせよ、「なるほど、視覚情報に反応しているのか」という話になる。しかし体がついてくる速さを計算すると、視覚から運動神経までの回路を通るための時間と比べてはるかに早いことがわかった。ということは、神経伝達で運動が視覚に合わせて調節されることはあり得ないことになる。飛び出し時点で記憶や本能などに基づく予想が形成され、この予想に従う飛翔を、視覚による小さな頭の動きで微調整するという結果だった。すなわちトンボも予想能力とそれに基づく内部イメージ形成能力があり、それが調節の主役になっているという結論だ。話はこれだけだが、考えるところは多かった。結論はともかく、トンボに印をつけて動きを計測する方法はいいアイデアだ。人間の動きの記録では常套手法だが、この方法により昆虫の飛翔の研究は進むだろう。ひょっとしたら、今よりはるかに恐ろしいミサイルが開発されるのかもしれない。一方結論についていうと、消去法に基づいているのが気になる。神経伝達系より早い反応なので、内部イメージが先にあるはずだという結論の導き出し方は注意すべきだろう。すなわち、これを言うためには、これまでの計測が本当に正しいのか詳細な検討が必要だ。事実、ヒトではリベットの実験という、思いついてから行動するまでの時間を測って、思いつく前から行動が決まっていたという結論に達した有名な実験がある。以前ドイツの哲学者ハーバーマスが京都賞を受賞し、記念シンポジウムで話せと言われた。哲学について話をするのかと思って勇んで行ったら、彼がリベットの実験と自由意志が本当に存在するかという哲学の問題と絡めていたのに驚いた。私としては計測の問題もあり、結論を鵜呑みにしないことが重要だといった気がする。Natureも商業誌だ。一般、特に哲学者が興味を示すような結論を載せたがる。今のところは、面白いお話として読んでおけばいいだろう。

カテゴリ:論文ウォッチ

12月14日:クモに習う(Natureオンライン版掲載論文)

2014年12月14日
SNSシェア

バイオミメティクスという分野があり、生物の持つ機能や構造から学ぶことで、新しい技術を開発しようという分野だ。私は工学は自然科学の僕ではなく、人間の側から物を考える学問だと思っている。進化では車輪は生まれなかったが、人間の都合から考えることで車輪が生まれた。とはいえ、必要があっても、常にそれに応えるいい考えが出るわけではない。無駄な時間を費やすより、38億年の進化から生まれた構造や機能から学んでそれを応用する方が早道なことはある。先週Natureオンライン版に広い意味でバイオミメティクスと呼んでいい論文が2報掲載された。一方はクモ、もう一方はトンボに学ぼうとしている。今日明日と、この2報を紹介する。今日紹介するのは国立ソウル大学からの論文で、タイトルは「Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system(クモの感覚系からヒントを得た割れ目を利用した超高感度センサー)」だ。最初クモの感覚器の話かと思って読み始めたが、実際にはセンサー開発の論文で、正直完全に理解できなかったことも多い。特に原理についての理論的考察は苦手な数学が出て困った。しかし、内容は理解できたと思っており、その範囲で紹介する。さて、メカノセンサーと呼ばれる圧力や振動を感じるセンサーが様々なところで必要になっている。例えばマイクロフォンがそうだが、高い感度で、ノイズに強く、折り曲げが可能なセンサーの開発はまだ難しいようだ。一方、クモは網にかかった虫の小さな振動をいち早く察知できる。そこで、クモの足に備わっているメカノセンサーを調べてみると、なんと工学的には想像できなかった端がギザギザの割れ目がはっしっていることに気がついた。これを材料として実現するため、フレキシブルなアクリルポリウレタンの上にプラチナ箔を合わせ、そこに割れ目(クラック)を作成する方法をまず開発している。その技術を基礎に割れ目の走ったプラチナ箔の伝導度を測ることで、圧力センサーと振動センサーの両方の機能を持ち、その上を歩くてんとう虫の振動を十分感じられるセンサーの開発に成功している。こうしてできたセンサーを、バイオリンの胴体の振動、首に装着して声帯の振動、腕に装着して心拍数と脈波、微笑流量センサー機能などの応用で調べている。理論的には完全に理解できないが、クラックが振動で付いたり離れたりすることで起こるコンダクタンスの変化を拾うことで、ノイズに強いセンサーが開発できていることは明らかだ。バイオリンの音を拾ったシグナルから再現しているビデオがあるが、広い音域を全部拾うことはできていないが、それぞれのセンサーの特性にあった周波数については極めてシャープに音が再現できていると思う。他にも、拍動数と脈波を身につけたまま連続測定できるのも優れものだ。アイデアがあればいろんな面白い製品に繋がる気がする。工学の論文もなかなか面白い。一方私の立場で見ると、クラックを使うセンサーがどう進化してきたのか、興味が尽きない。新しい意味で、基礎研究と工学研究が相互作用することができるような気がする。さて、明日はトンボだ。

カテゴリ:論文ウォッチ

12月13日:クリスパーを改造して全遺伝子の発現スウィッチを自在に操る(Natureオンライン版掲載論文)

2014年12月13日
SNSシェア

ゲノムの任意の場所にCas9を局在させる技術、CRISPR/Cas9は今人々の想像力をかきたてているようだ。このホームページでも11月2日にこの技術を使って任意の遺伝子の発現を誘導したり、抑えたりする技術を紹介した。今日紹介する論文も任意の遺伝子を誘導する方法開発についての研究だが、以前紹介したカリフォルニア大学からの研究とは幾つかの点で違っている。同じ目的を実現するため、様々な方法が競い合う技術の成熟段階に入ってきたことを実感する。と言っても、もちろんまだまだ様々なアイデアが出てくることは間違いない。ハーバード大ブロード研究所からの論文で、JSTさきがけの西増、東大の濡木さんも共著者になっており、Natureオンライン版に掲載されたばかりだ。タイトルは「Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex(改変したCRISPR/Cas9複合体による全ゲノムレベルの遺伝子発現誘導)」だ。11月2日に紹介した研究ではCas9のみ改変して(短いペプチド片を加えて)、それに対する抗体に遺伝子活性化分子VP64を融合させて特定の遺伝子を活性化する方法を開発していた。これと比べると、今日紹介する研究はCas9だけでなく、それが結合するガイドRNAも改変するのがポイントだ。今年発表された西増さんたちのCas9構造解析を詳細に検討して、ガイドRNAの一部がCas9から飛び出しているのに気づき、この飛び出している部分を改変できないか思いつく。この研究ではタンパクと結合するアプタマーと呼ばれるRNAを設計、飛び出している部分に加えることでアプタマーの結合するタンパク質をこの部分に引き寄せてくることに成功している。ここでは私たちの遺伝子には存在しないファージビールスのカプセルタンパクMS2をアプタマーと他のタンパクを結合する橋渡しに使っている。これによって、ガイドRNAの結合する遺伝子部位に自由に様々な分子をリクルートする事が可能になった。最初はMS2に遺伝子を活性化させるVP64を結合させる方法を試したが、さらに効率の良い方法として、Cas9にVP64、ガイドRNAにはNFκB転写因子の一部p65を結合させたMS2をリクルートさせる方法に辿り着いている。いずれにせよ、ガイドRNAにタンパクをリクルートさせるというアイデアがこの論文の全てだろう。この方法の優位性を示すために、1)複数の遺伝子を同時にオンにできるか、2)新しい技術を実際の創薬に生かせるか、について結果を示している。10種類の遺伝子を同時に発現させられるか試みられているが、実際には個々の遺伝子を活性化するより効率が落ちてくる。ただ、これは方法の限界ではなく、細胞自体の許容力の問題であることが確認されているため、様々な分子を同時に発現させる標準的な方法に発展するだろう。創薬については、悪性黒色腫の分子標的治療の際に問題になる薬剤耐性の原因となる分子の探索を行い、興味ある遺伝子リストを作成している。このように、この論文では実際の有用性を具体的に示した点でも意味は大きいと思う。おそらく次は、遺伝子の発現量を自由に調節するための方法開発が目指されていることだろう。しかしクリスパーの技術開発を見ていると、最初我が国で発見された分子を元に、外国で技術が開発され、今度は我が国で行われた構造解析を元に、新しい技術がまた外国で開発されるといったサイクルになっているのが気になる。我が国が素材を提供して、アップルがアイデアを提供する産業で見られるのと同じサイクルが多くの分野で進んでいるように思える。21世紀、多くのアイデアを軽々とまとめるような若者が我が国から生まれるような施策も大事だと思う。

カテゴリ:論文ウォッチ

12月12日:ユーウィング肉腫(11月9日号Cancer Cell掲載論文)

2014年12月12日
SNSシェア

次世代シークエンサーの威力が最もはっきりわかるのがガンの分野だろう。現在急速な勢いでガンのゲノム配列が解読され、2−3年もすればガンを発生させるポテンシャルのある遺伝子の組み合わせに関するリストは完成するのではないだろうか。しかしこのリストはガンを本当に知るための入り口で、その後発症メカニズムを理解するための長い道のりが待っている。実際、ガンの原因遺伝子がわかっても、なぜ病気が起こるか理解できないケースは多い。そんな腫瘍の一つがユーイング肉腫だ。学童期以上の子供達を襲う肉腫で、転移が早く治療が厄介な腫瘍だ。この腫瘍はEWSとFlI1遺伝子が遺伝子転座で合体することで発生することがわかっている。最近になって、腫瘍がいわゆる間葉系幹細胞を起点として発生することもわかってきた。しかし、なぜEWS-FLI1キメラ遺伝子が腫瘍の引き金になるかについて納得いく説明は得られていなかった。私自身も現役最後の10年、間葉系幹細胞やFli1に直接関わる仕事をしていたため、この腫瘍の発生機序には特に興味を持っていた。そんな時、今日紹介するハーバード大学からの論文を読んでなるほどと納得することができた。11月9日号のCancer Cellに掲載されてた論文で、1ヶ月遅れだが是非紹介したいと思う。タイトルは「EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or represss enhancer elements in Ewing sarcoma.(EWS-FLI1は様々な染色体再構成のメカニズムを使ってユーウィング肉腫のエンハンサー部位を直接活性化したり抑制したりする)」だ。研究ではまずEWS-FLI1キメラタンパクがゲノムのどこに結合しているかをマッピングし、結合部位の配列、染色体構造をゲノムワイドに調べ、EWS-FLI1が結合した部位の染色体構造が、遺伝子の発現を促進する構造に変わっていることを発見した。言い換えると結合場所にエンハンサー活性が新たに発生している。このエンハンサー部位を詳しく調べると、GGAA塩基配列が繰り返し構造を持つ領域で、そこにEWS-FLI1が結合してp300などエンハンサー分子複合体が形成され、その中のWDR5などの作用で染色体構造が遺伝子発現促進型にリプログラムされていることがわかった。この結果、周りの多くの遺伝子の発現が上昇する。このEWS-FLI1結合部位は、普通の細胞ではエンハンサー部位として働いておらず、EWS-FLI1特異的なエンハンサーとして働いて、腫瘍の異常増殖を引き起こしているという結果だ。一方、FLI1はEtsファミリー分子としての特定の結合部位も持っている。この部位を調べてみると、正常のEtsファミリー分子を追い出し、結果その分子により発現している遺伝子が抑制されていることもわかった。まとめると、EWS-FLI1キメラタンパクは、普通なら遺伝子調節に関わらない部位に勝手に結合してエンハンサーに仕立て上げ、周りの遺伝子の発現を促進する一方、正常Etsファミリー分子をゲノムから追い出して細胞の正常機能に必要な遺伝子の発現を抑えるという驚きの結果だ。言ってみれば悪貨が良貨を駆逐して細胞の中で我が物顔に振舞うようになっている。ここから見えるのは、この分子によって多くの遺伝子発現が変わるという複雑な状況で、本当に治療の標的があるのか少し心配になる。幸いこの研究では、活性化されている遺伝子の中には細胞の増殖に関わるものが多く、新しい治療法開発のチャンスがあることも示唆している。その証明として、このグループはVRK1と呼ばれるリン酸化酵素を取り上げ、この分子を抑制すると肉腫の増殖が落ちることを示している。これが本当か、あるいは気休めかはさらに研究が必要だ。結局、はっきりとした焦点なしに遺伝子発現が促進して細胞が腫瘍化する可能性が示された事になるが、私にとっては十分納得のいくメカニズムの説明が得られたと思っている。多くの分子が動いたとしても、スーパーエンハンサー機能をCDK7を抑制して叩くといった戦略も可能かもしれない。やはり確かな前進だと今後に期待している。

カテゴリ:論文ウォッチ

12月11日:使い捨て携帯シークエンサー(12月8日号Nature Biotechnology掲載論文)

2014年12月11日
SNSシェア

次世代シークエンサーは21世紀の幕開けに販売が始まり、瞬く間に生命科学を変えている。それ以前のシークエンサーを用いて行われたヒトゲノム計画はおそらく千億円単位の費用がかかった国家プロジェクトだった。ところが、次世代シークエンサーが生まれ、さらに改良が進むことで、ヒトゲノムは我々個人の手の届くところに近づきつつある。事実、2004年にアメリカは1000ドルゲノム計画をスタートさせ、ゲノム情報をを研究室から個人へ移行させようという流れを演出した。このプロジェクトで次世代の次の世代を担うと思われる多くのテクノロジーが生まれた。特に現在最も使用されているシークエンサーが長いDNAを読めないという問題点を解決した一分子シークエンサーと呼ばれる機器は、例えばPacBioの機器のように普及が始まっている。ただ従来型であれ、一分子シークエンサーであれ現在市場に出回っている機器は、誰もが想像するように、大型機器で研究室の一角に鎮座して堂々とした存在感を示すというのがイメージだ。これに対し、今日紹介する英国の公衆衛生局からの論文は、MinIONと呼ぶまさにイノベーションというべき使い捨て携帯シークエンサーを使ってみたという研究で、12月8日号のNature Biotechnologyに掲載されている。タイトルは、「MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island(MinIONナノポアシークエンサーは細菌の抗生物質耐性部位の位置と構造を特定する)」だ。言葉だけでは難しいのでぜひナノポア社のサイトでこのシークエンサーがどんなものか見て欲しい(https://nanoporetech.com/technology/the-minion-device-a-miniaturised-sensing-system/the-minion-device-a-miniaturised-sensing-system)。機器として必要なのは普通のパソコンだけで、あとは使い捨てUSBメモリーぐらいの大きさのシークエンスのフローセルがあり、これは使い捨てだ。これだけで破壊的なイノベーションだということがよくわかる。研究では現在のシークエンサーが苦手とする抗生物質耐性部位を特定するのに役に立たないかを調べている。要するに、明日から普通のシークエンサーとして使うにはまだまだ早い。しかし、技術を育てる意味で現在のシークエンサーと組み合わせば、特徴を十分活かせるという結論だ。実際、一番良い条件でもシークエンスの正確さは8割しかない。ただ、簡便であること、短い時間でいいこと、そして何よりも平均5kb、時によっては10kbを越す配列を読みだしてくれるという、独自の特徴はある。詳細は全て割愛するが、この論文の結論も、「目的を選べばなんとか使える。短所を指摘するより、長所を生かして使ってみよう」だろう。しかし、説明を読むと、自分の家でもシークエンスが可能かもしれないと思わせるイノベーションだ。問題があっても製品として世に出して育てていく。イノベーションにはこういった長期的視野が大事だ。

カテゴリ:論文ウォッチ

12月10日:究極の合剤:二兎を追うより三兎を追え(Nature Medicineオンライン版掲載論文)

2014年12月10日
SNSシェア

糖尿や高血圧の治療のために、メカニズムの異なる2−3種類の成分を混ぜた配合剤と呼ばれる薬剤が販売されている。もちろん配合剤はこれらの病気に限らず、古くからよく使われてきた。処方や、服用の便宜を測ってのことだろうが、逆に何を服用しているのかが意識されなくなることは問題だと思う。ただ、これらは一つの薬剤に見えても、結局は2−3種類の薬を別々に服用しているのと同じだ。配合剤は合剤とも呼ばれることがあるが、「混」と違って「合」には部分が合わさった効果を超える統合された効果を意味する響きがあり、安易な省略はやめたほうがいいと思う。しかしこの点から言うと、今日紹介するミュンヘン・ヘルムホルツ研究所からの論文は、一つの分子で3種類の薬効を実現する、いわば究極の統合剤についての報告で、Nature Medicineオンライン版に報告された。タイトルは「A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents(合理的にデザインされた3つの効果を持つ単一ペプチドはげっ歯類モデルで肥満と糖尿を改善する)」だ。この研究では、いわゆる消化管ホルモンと呼ばれる3つのペプチドを統合させた単一ペプチド合成に挑戦している。すなわち、膵臓α細胞から出るグルカゴン、消化管由来のインシュリン分泌作用のある2種類のインクレチンGLP-1とGIP、この3種類のペプチドの効果をもつ単一のペプチドを合成することがこの研究の目的だった。おそらく進化的にも同じ遺伝子が重複してきたのだろう、3種類のペプチドは並べてみるとよく似ている。しかし、これを一つのペプチドにまとめられるというアイデアはやはり化学者のセンスと言える。おそらく多くの試行錯誤を繰り返したことだろう。最終的に個々の活性でも自然にあるペプチドの活性を超える作用を有する単一ペプチドの合成に成功する。こうしてできた分子は、2種類のインクレチン作用でインシュリン分泌を促進し、グルカゴンで糖代謝を促進する作用を兼ね備えており、また血糖についてはブレーキに加えて、少しアクセル効果が組み込まれたとも言える分子ができたことになる。このペプチドの設計がこの論文の全てなので、詳細は割愛するが、最も驚くのはこのペプチドがそれぞれのシグナルを別々に刺激するよりはるかに優れた抗肥満作用と、抗糖尿作用を有する点だ。おそらくグルカゴンの作用が絶妙にバランスされた作用が実現したからだろうが、肥満マウスを使った実験で、別々の分子ではたかだか3−5%の体重低下が可能な条件で、なんと15%近くの体重減少が達成されている。またインシュリン感受性も改善された総合的抗糖尿作用が見られている。他にもFGF21血中濃度の上昇も、新しいペプチドだけで見られているという予想を超える結果だ。マウスとラットのモデルでこの効果は確認されているため、あとは臨床実験に向けた化学的改良が残っているだけだろう。しかしこれだけ期待以上の効果があると、少し心配になる。ジギタリスとおなじで、体の細胞を酷使してしまったのでは大変だ。幸い、そんなことは百も承知のようで、最後に臨床応用は慎重に症例を選んで進めるべきだと指摘し、プラダー・ウィリー症候群や脂肪肝など、最初の治験に適したと彼らが考えている病名まで明記している。いずれにせよ、本当の意味でのsynthesis、統合•止揚できた薬剤が設計できるとは化学者に脱帽。

カテゴリ:論文ウォッチ

12月9日:大腸菌でマラリアを防ぐ?(12月4日号Cell掲載論文)

2014年12月9日
SNSシェア

このホームページでも紹介してきているが、腸内細菌叢の様々な機能に期待する論文がトップジャーナルに続々掲載されている。しかしここまでの流行になると、ひょっとしたらこれまで説明の難しかった現象を説明するために私たちが期待しすぎているかも知れないと少し心配になる。例えばサプリメントの効能は、医薬品と同じようには検定はされていない。中には内服後本当に血中に吸収されるかどうかわからないものも多い。例えばコラーゲンを内服して本当に効果があるのだろうか?こんな疑問も、「腸内細菌にコラーゲンの分解物が働いて効果が得られるのだ」と言われてしまえばおしまいだ。そんな期待でこのトレンドが作られていないことを望むが、今日も読後感のすっきりしない細菌叢の論文を取り上げる。ポルトガルのグルベキアン研究所からの論文で、12月4日号のCellに掲載されている。この論文に興味を持ったのは1997年、まだ研究インフラの整っていないポルトガルから選別されたエリート大学院生に集中講義を頼まれ1週間滞在したこの研究所からCellに掲載される論文が出るようになったのかという感慨もあった。タイトルは「Gut microbiota elicits a protective immune response against malaria transmission (腸内細菌叢によってマラリア感染に対する免疫反応が誘導される)」だ。読んでみると、少しゴチャゴチャしすぎているというのが印象だが、シナリオを掬い取ると、「マラリア表面上の糖鎖抗原に対する抗体は、腸内の病原性大腸菌により誘導され、感染防止に役立っているが、ワクチン接種による補助免疫効果が期待できるので、マラリアワクチン開発の参考になる」とでも言えるだろうか。結果をまとめると、1)4GlcNacR-グリカンに対するIgM抗体は疫学的に見てもマラリア感染防止に役立っているが、マラリア流行とは相関しない自然抗体として存在している、2)糖修飾を人型にしたマウスに4GlcNacR-グリカンを発現する病原性大腸菌が感染すると、マラリア予防抗体が誘導される。3)予防効果がある抗体のクラスは、IgMだけでなく、IgGクラスでも良い、4)IgMクラスの抗体も誘導にT細胞が必要、5)自然免疫TLR9を刺激するリガンドとアジュバントなどを混ぜて免疫すると抗体価がさらに上がる。6)抗体の効果には補体と白血球が必要、7)赤血球に侵入したマラリア原虫には効果がない、などだ。基礎研究として見ると、感染防止効果があるIgM抗体の産生にもT細胞が必要という点がおもしろいぐらいで、おそらく感染免疫学をやっている人たちから見れば、病原性大腸菌との関係も特に驚くほどのことはないはずだろう。レフリーが甘すぎるように思う。とはいえ、マラリアに苦しむ人はまだまだ多く、ワクチンの設計にも役立つ点では、まあ許してもいいような気がする。個人的に言うと、ほぼ20年前に私たちが教えた異国の大学院生たちが国に帰って頑張っているのは嬉しい。

カテゴリ:論文ウォッチ

12月8日:多発性硬化症のIndazole-Clによる治療(アメリカアカデミー紀要掲載論文)

2014年12月8日
SNSシェア

多発性硬化症に対しては嬉しいことに新しい治療薬が続々開発されている印象がある。このホームページでもすでに利用が進むフィンゴリモド、徐放性インターフェロンβ、抗CD25 抗体、スタチンなどを紹介した。この嬉しい悲鳴はもっぱら多発性硬化症を研究するためにいい動物モデルとしてマウスのEAE(experimental autoimmune encephalomyelitiss:実験的自己免疫性脳脊髄炎)があるおかげだ。このモデルでは、自己免疫によるミエリンの消失と、オリゴデンドロサイトの再生による再ミエリン化のバランスが拮抗しながら病気が進む有様をよく再現でき、薬剤の効果を生きた動物で確かめることができる。このモデルからわかる理想的治療薬は、免疫反応を抑え、オリゴデンドロサイトの再生を促す薬剤だ。これまでの研究からエストロゲン受容体βを刺激することでこれが可能になるのではと期待されてきたが、どうしてもα受容体に対する活性をのぞくことができていなかった。今日紹介するカリフォルニア大学リバーサイド分校からの論文はこの目的で開発されてきたIndazole chrolide(塩化インダゾール)効果をマウスモデルで確かめた前臨床研究で、アメリカアカデミー紀要に発表された。タイトルは「Multiple functional therapeuticc effects of the estrogen receptor β agonist indazole-Cl in a mouse model of multiple scleraosis (エストロゲン受容体βの刺激剤塩化インダゾールはマウス多発性硬化症モデルに対して多様な治療効果を有する)」だ。結果はは明快で、この薬剤は免疫を抑え、ミエリン再生を促進する両方の効果を持つ薬剤として期待できるという結論だ。まずモデルマウスにこの薬剤を投与すると、全般的な臨床症状が全般的に改善するが、女性ホルモンとしての副作用はほとんど無い。この効果のメカニズムを探るために、自己免疫病の主役Tリンパ球を調べると、病変部のリンパ球の浸潤が抑制され、炎症性のサイトカイン分泌を抑制している。したがって、自己免疫病を抑制する効果がある。次はミエリン化だが、脊髄や脳梁の脱ミエリン化が抑制され、再ミエリン化が上昇している。これはオリゴデンドロサイトの生存が特定のシグナル経路(PI3K/Akt/mTOR経路)を介して守られることによることが明らかにされている。結果として、脳梁の神経伝達が生理学的に上昇し、さらにマウスの運動機能低下が抑制できているという結果だ。申し分ない結果だ。私として言うことがあるとすれば「わかった。そこまで言うなら、早く臨床効果を示して患者さんを救ってほしい」だけだ。

 

 

カテゴリ:論文ウォッチ

12月7日:電気ウナギの戦略(12月4日後Science掲載論文)

2014年12月7日
SNSシェア

子供でもわかる素朴な質問を抱き続けて、大人になってから答えを出すことができる科学者などそうはいない。自分のことを振り返ってみても、説明しようと挑戦した問いは、子供にはわかりにくい問題だったと思う。もちろん例えば「血液はどうできる?」といった具合に、一般の人にもわかりやすく問題を説明することはある。しかしそうすると今度は、実際取り組んでいる問題と比べるとあまりに一般的になってしまう。その点から言うと、今日紹介するテキサス・バンダービルト大学からの研究はズバリ、「電気ウナギは電気をどう使っているの?」というわかり易い問に取り組んだ研究で、さらに羨ましいことに12月4日号のScience誌に掲載されている。もちろんこんな問いをチームで研究するはずはない。Kenneth Cataniaさんという今時生物学では珍しい単名の論文だ。タイトルは「The shocking predatory strike of the electric eel(電気ウナギの捕食のためのショック攻撃)」だ。繰り返すが、扱った問題は電気ウナギがどう電気を利用して餌の小魚を獲るか?が問題だ。論文の中では多くの動画が使われており、電気ウナギの狩りの戦略が、実際子供にもよくわかるようになっている。質問1「電気ウナギの電気攻撃はどんな効果があるの?」答え)電気は3.7ミリ秒のパルス波で0,2秒程度続き、相手の運動筋肉を収縮させて動けなくする。ただ、小魚は死なない。質問2「電気パルスは筋肉に効くの、神経に効くの?」答え)筋肉ではなく、運動神経。質問3)「電気パルス発射のタイミングは?」答え)相手の魚の動きを感じた時。質問4)「相手の動きを感じるために電気は必要?」答え)イエス。電気パルスを2−3回発射し、相手が驚いて動いたら生き物がいる判断して、今度は強い電気パルスを発射し動けないようにする。これだと、餌が隠れていても見つけることができるね。最後の質問)「攻撃パルス発射の前に探索パルスを必ず発射する必要はあるの?」答え)パルスを発射しない時に動きを感じても攻撃パルスを発射できるので、センサーとしては動きだけを感じている。これが実験の全てだ。これを電気ウナギの発するパルスを記録する装置、魚の筋肉の緊張を測る装置、魚の動きを人為的に誘導する装置などを使って実験しているが、別に大がかりな装置ではない。おそらく高校生なら十分考え付く、いわば素人実験だ。どのような経緯で編集者が掲載を決めたのか、なんと9月に投稿して11月に掲載が決まっていることから、編集者の強い意向を感じる。そして何よりも、この研究のために研究費が政府から支給されており、仕事がプロにも支持されている点だ。子供の頃の疑問を持ち続けていつか答えを出したいという人たちに対する大きな励ましになるだろう。そして何よりもおそらく奥さんと思えるF.Cataniaさんだけに謝辞が捧げられているのも微笑ましい。これも思わず微笑みが溢れる論文だった。

カテゴリ:論文ウォッチ