9月13日 CAR-Tに用いる抗体分子は抗原に対して低い親和性の方が効果が高いこともある(Nature Medicineオンライン版掲載論文)
AASJホームページ > 新着情報

9月13日 CAR-Tに用いる抗体分子は抗原に対して低い親和性の方が効果が高いこともある(Nature Medicineオンライン版掲載論文)

2019年9月13日

我が国でも薬価が決まり、オプジーボとともに最も注目されているガン抗原に対する抗体とT細胞受容体シグナル伝達システムを組み合わせた受容体遺伝子を自己リンパ球に導入してガンを殺させるCAR-T療法も、特に小児の急性リンパ性白血病の治療には万能でないことがわかってきた。一番厄介なのがCAR=Tが抗原に反応して誘導されるサイトカインによる全身への影響とs脳神経の障害が副作用として多発する点だが、40−60%で再発が起こる。

今日紹介するロンドンにあるGreat Osmond Street Instituteと、Autolus Ltdが共同で発表した論文はこれまでのCAR-Tの問題の多くをなんとガン抗原として用いるCD19抗体の親和性をグッと下げたほうが効果が高く、副作用も少ない可能性を示す臨床研究でNature Medicineにオンライン出版された。タイトルは「Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR (小児のALL 治療に用いた低い親和性のCD19CAR―Tは従来のものと比べて体内での増殖と持続が促進される)」だ。

この研究ではガン抗原に結合したまま離れない場合、T細胞が疲弊する可能性があると考え、現在臨床に使われているよりCD19に対する親和性が40倍低い抗体分子を用いたCAR-Tを作成し、CATと名付け、現在利用されているCAR-Tと比較している。

おそらく抗原との結合・乖離を繰り返すことが可能になるため、試験管内で調べると白血病への細胞障害性が高く、またTNFの分泌効果も高い。

次に、モデルガン細胞を移植したマウスを用いた系にCAR―Tを注射して比べると、調べたほとんどのテストで従来のCAR-T(FMC63)のパーフォーマンスを上回ることがわかった。

この結果を受けて、骨髄移植を含む様々な治療にも関わらず再発した最終ステージの小児のALL患者さん17人にこの治療を試みている。このうち、CAR-Tを患者さんの末梢血から作成できたのが14人で、この患者さんたちの経過が詳しく述べられている。ただ、無作為化や偽治療などは行わない一種の観察研究だが、CAR-T治療の場合はこれが標準になっていると思う

さて結果だが、14人の内、白血病細胞が癌遺伝子で見ても完全に消えたケースは12例で、2例は全く反応しなかった。従って、低い親和性の抗体でも期待通り高い効果が得られる。しかし、ガンがCD19の発現を抑えてCAR-Tからの攻撃をする抜けて起こる再発が6例に見られる。これはガン自体の問題で、CAR-Tでは解決できないと思うが、今後この問題にどう対処するのか研究が待たれる。

フォローアップ期間がまちまちなので、最終結論を下すのは難しいが、2年目での生存率を5割程度と予想している。これはFMC63と大体同じレベルだが、最も大きな違いは、白血病が消えた後も多くの患者さんでCAR-Tが長期に維持されていることで、記憶型CAR-T細胞が出現したのではと議論している。

もう一つ重要な違いはFMC63と比べて副作用が低い点で、サイトカイン遊離による症状はグレード2まで、同じく、神経障害もグレード3まで行くのが1例だけだった。ただ、白血球減少症や、感染症などは同じようにおこる。

以上が結果で、まだ少数例だが十分期待できると思う。今後さらに多くの治療例を加えて最終結果が出ると思う。生存期間で見ると、大きく改善とはいかないようだが、多くのCAR-Tが競合できる環境が生まれるのは、患者にとってはありがたい。決してカルテルなど結ばず、効果と価格で競争して欲しいと思う。

カテゴリ:論文ウォッチ

9月12日 色認識の言語化(9月3日号 Cell Reports 掲載論文)

2019年9月12日

私たちの認識は強く言語に影響されている。実際に網膜から入ってきたインプットは連続的な色彩として感じられているのだが、人間ではこれを様々な不連続な色の名前としてカテゴリー化して認識している。実際思い出す時色彩を鮮やかに頭の中に再現するのは、芸術家以外には簡単ではないと思うが、言葉を合わせて「服は何色だったか?」などと言語を組み合わせることで、過去のイメージもおおよそ思い出すことができる。

今日紹介するフランス ソルボンヌ大学を中心とするドイツ、英国3カ国からの共同論文は色は感じているのにその名前を言えなくなった一人の患者さんを解析して、色の表象と言語がどう連結されているのかを調べたいわゆる一例報告だが9月3日発行のCell Reportsに掲載された。タイトルは「Color Categorization Independent of Color Naming (色のカテゴリー化は色の名前を述べることとは独立している)」だ。

この研究は、脳梗塞により言語野を含む左側頭葉が広く障害されたフランスに長く在住している54歳のポルトガル人の症例解析で、急性症状の回復後も話はできるが読むことができない失語症とともに、色の名前だけが思い出せないという稀な症状を示すようになった。

これまでの研究で、言語が発達する前に色のカテゴリーが脳内で形成されることが知られていたが、その後言語が発達すると、言語によってカテゴリー共々再構成されるのではないかと考えられていた。とすると、この色の名前が出てこない患者さんを詳しく調べれば、色のカテゴリー、言語の関係をはっきりさせられるのではと期待して、一人の患者さんではあるが詳しく検討している。

まずこの患者さんが色の名前は出てこないが、黒とか灰色など色彩がないと名前は正常に出てくることを確認している。その上で、彼らが開発した色のカテゴリーが形成されているかどうかを調べるテスト(詳細は割愛する)を行い、色のカテゴリー化能力は卒中によっても全く障害されていないことを発見する。

実際、患者さんに空色を見せると、「これは空の色」と理解するし、赤を見せると「血の色」と言えるようにカテゴリーとしては理解できていることが予想されていた。

以上の結果から、言語は、私たちの色の認識をカテゴリーも含めて完全に再構成して、大人では言語と色認識の連結がまず最上位にくることが明らかになった。タイトルにあるように、言語化はカテゴリーとは独立していることになる。

最後にこの患者さんの脳の機能やネットワークを詳しく調べ、色認識のカテゴリーは両方の脳半球に分布しているのに対して、色の名前を声に出して告げるための言語野と色認識を連結させるハブが今回障害された左脳の側頭野に存在することがわかった。面白いことに、このハブを用いる認識の言語化は色だけで、色彩がないと灰色とか黒とか、問題なく名前が出てくることから、黒から白まで様々な段階の言語化は全く別のハブを使っていることもあきらかになった。

以上、言語について色々考えてきた私にとっては(HPの生命科学の現在)大変面白い論文だった。言語はもともと一つの単語は他の様々なイメージと連結されることでカテゴリー化する能力とともに発達する。その意味で、この患者さんには申し訳ないとは思うが、さらに様々なテストにより言語とは何かを考えるヒントが生まれることを期待する。

カテゴリ:論文ウォッチ

9月11日 免疫システムの奥深さ:アナフィラキシー誘導メカニズムの新説( 8月30日号 Science 掲載論文 )

2019年9月11日

20世紀の後半に急速に進んだ免疫学によって、様々なクラスの抗体が抗原に合わせて産生され、時によってはアナフィラキシーショックなどが起こる細胞・分子メカニズムについてはかなり明らかになった。と思っているのは自分だけで、まだまだ抗体産生でもよくわかっていなかったことをこの論文を読んで思い知らされた。

今日紹介するイェール大学からの論文は、アナフィラキシーに関わる抗原に対する高い親和性を持ったIgEは、これまでIgE産生メカニズムとして提唱されていた、GTAT3によりIL-4産生に特殊化したヘルパーT細胞がB細胞のIgE産生へのスイッチを誘導するとする考えとは異なるメカニズムで誘導されることを示した研究で8月30日号のScienceに掲載された。タイトルは「Identification of a T follicular helper cell subset that drives anaphylactic IgE (アナフィラキシーに関わる濾胞性Tヘルパー細胞のサブセットの同定)」だ。

一般的な免疫反応は低下しているのに、アナフィラキシーだけが起こりやすい、逆説的な症状がDock8の突然変異で起こることが知られているが、このメカニズムは従来のIgE産生に関する考え方では説明つかなかった。この研究では、まずこの現象をマウスで再現しようと、Dock8がT細胞、B細胞で特異的に欠損したマウスを作成し、T細胞でDock8が欠損すると、高IgE血症が起こることを明らかにし、Dock8ノックアウトによりT細胞に起こる変化とそのIgE産生との関わりを詳細に調べている。膨大なデータが示されており、読み応えがある力作だが、ここでは全て割愛して、結論だけを箇条書きにする。

  • T細胞でDox8が欠損すると、普通の免疫方法で抗原投与を行なっても、親和性の高いIgEが産生され、アナフィラキシーを起こす。この時、正常マウスにはほとんど存在しないIL4陽性、IL13陽性で、濾胞T細胞の特徴を持つT細胞サブセットが出現し、 B 細胞のIgEへのスイッチを誘導する。この時IL13とIL4の両方を同時に発現することが重要で、IL4だけではアナフィラキシーは起こせない。
  • T細胞でIL21により誘導されるDock8は、このTサブセットが通常の免疫反応で出現してB細胞が必要のない時にIgEにスイッチさせるのを防いでいる。
  • IL13陽性の濾胞性T 細胞は、正常マウスで高い抗原親和性のIgEを誘導してアナフィラキシーを起こす免疫プロトコルで、上昇する。単一細胞のRNA発現を調べることで、IL13,IL4陽性細胞は独立したT細胞のサブセットであり、自然免疫システムに依存しない、IL21の誘導が少ない免疫プロトコルで誘導される。
  • これまでIgEを誘導するとして用いられてきた寄生虫をアジュバントとして用いる方法では、IL13を分泌する濾胞型T細胞は誘導できず、IL4によりスイッチは起こっても、親和性の高いIgEは産生されない。

以上のデータに基づき、IgEへのクラススイッチには2タイプ存在し、IgM産生B細胞がIL4によりIgEへ直接クラススイッチする場合は、抗原親和性が低いIgEが産生される。寄生虫に対する反応がこのタイプの代表(確かに考えてみると、寄生虫でアナフィラキシーが起こっては困る)。

もう一つのタイプは、リンパ節濾胞IL13分泌T細胞が誘導され、すでにIgGへスイッチしたB細胞がこのT細胞が分泌するIL4とIL13両方の作用を受ける場合で、この場合は抗原への高い親和性を持つIgEが作られアナフィラキシーが起こる。ただ、通常の免疫ではIL21により誘導されるDock8によりこの経路は抑えられているというシナリオだ。

これまでIgEは寄生虫感染への対応として進化したと個人的には思っていたが、この研究で示された特殊なT細胞依存性にアナフィラキシーが起こるとすると、アナフィラキシーも生物学的意義を持っているのかもしれないと思う。実際説明を割愛したが、この細胞はIL5も分泌して好酸球を誘導している。このような特殊反応がどう進化したのか、面白い課題だと思う。いずれにせよ頭が整理できる素晴らしい研究だと感じた。

カテゴリ:論文ウォッチ

9月10日 統合失調症の早期診断、早期治療はあり得るか(9月5日号 Cell 掲載論文)

2019年9月10日

統合失調症は動物モデルがほとんどないため、メカニズムに基づく治療法の開発が簡単でない。それでもこのコーナーで紹介しているように、iPS細胞を使ったり、病理標本を使ったりと少しづつ輪郭が見えてきているという段階だろう(統合失調症でAASJホームページを検索してもらうと40近い紹介記事が出てくると思う。このような論文を読んでいてなんとなくわかるのは、前頭前野、海馬などの介在ニューロンの発生が発症に重要で、これを早期に正常化できれば、長期の改善が期待できるような気がしてくる。

今日紹介するスイス・バーゼルにあるフレデリック・ミーシャ研究所からの論文はこの期待を裏付けるのではと思わせる研究で9月5日号のCellに掲載された。タイトルは「Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model (遺伝的統合失調症モデルの認知ネットワークの機能異常を持続的に正常化する)」だ。

この研究は面白いのだが、タイトルのつけ方などから野心的すぎてミスリードされる危険をはらんでいる。この研究で用いられたモデルマウスはLgDel(+/-)として知られる、人間の22Q11欠失症に相当するマウスモデルで、人間の場合心臓発生異常から知能障害まで多くの症状を示す。免疫学で有名なディ・ジョージ症候群もこの中に入る。ただ、この論文の場合このモデルを「統合失調症モデル」と一言で片付けており、その結果この研究で調べられている症状が全て統合失調症に集約するような錯覚を与えるので注意が必要だろう。

少し批判的に書いたが、前頭前野、海馬(CA1,vH)で高周波の脳波の異常を指標にするなど、十分人間の統合失調症に対応させられる。この研究ではまず、LgDelモデルマウスで50Hz以上の高周波数の脳波発生が統合失調症と同じように前頭前野で低下していること、shifting taskと呼ばれる行動テストや社会性テストがやはり統合失調症と同じで落ちていることを確認している。

もちろん症状だけでLgDelを統合失調症モデルといってしまうと問題はあるが、著者らは前頭葉の皮質に存在する介在ニューロンでParvalbminを強く発現した集団が思春期を越しても発達しないことを発見し、病理的にも統合失調症モデルとしても似ていること、またこの結果モデルマウスでは介在神経数は同じでも、活動が抑えられていることを発見する。さらに光遺伝学的に介在神経を抑制することでLgDelと同じ症状

そしてこの研究の最も重要な発見、すなわちこのPV陽性介在ニューロンの発生は、海馬では早く始まるが、前頭葉の皮質で異常が発生するのは生後60日目から120日目までの、人間で言えば思春期から大人になる過程であることが示される。この思春期から成人になる過程で異常が急速に発生するのは統合失調症の発症に似ており、もしこの過程をなんとか正常化させられれば、PV陽性介在神経の発生を清浄化できる可能性が生まれる。

そこで、まず介在神経の興奮が低下していることがわかった抑制型に傾いているLgDelマウスを統合失調症でも用いられるドーパミン受容体を抑制する薬剤を投与すると、一過性だがPVを高発現する介在神経が増えγ波が回復することを確認している。

この結果を受けて、PV神経の抑制・興奮バランスが形成され、γ波が発生する前から10日間ドーパミン受容体抑制剤を連続投与することで、PV神経バランスを正常型に戻し、γ波の発生を含む様々な異常を持続的に治せることを示している。

さらにこの治療効果のメカニズムを探るため、症状に最も関わる海馬のvHあるいは、前頭前野に薬剤を局所投与する実験を行い、驚くことにどいちらかでPVバランスを回復させると、この効果がネットワーク全体に及び、異常の発生を長期的に抑えられることを示している。

結果は以上で、魅力的な結果なので、少なくとも22Q11症候群の神経症状の治療に用いるための準備が進められる予感がする。ただ、難関はまだ異常が発生しない発達期の脳にドーパミン受容体の抑制剤を全身投与するための条件で、局所的な投与も許されるのならいつどこに投与するのかをはっきりさせるためのさらなる前臨床試験が必要だと思う。重要な研究だと思うが、まだまだ道は長そうだ。

カテゴリ:論文ウォッチ

9月9日 寝ないで済む突然変異(9月25日号 Neuron 掲載論文)

2019年9月9日

昼間でも眠たくなる私には想像できないのだが、若い時からあまり寝なくとも何の問題もないという人たちがいるようで、しかもその一部は明らかに遺伝性があることがわかっているらしい。今日紹介するカリフォルニア大学サンフランスシスコ校のグループは、これまでも短い睡眠でも普通に生活できている(と言うより長い時間寝られない)家族の遺伝子を研究しており、これまでに概日周期に関わるDEC2遺伝子を特定していた。

今日紹介する論文は同じように睡眠の短い家族を解析して、β1アドレナリン受容体の突然変異が短い睡眠しかできないと言う形質を引き起こすことを示した論文で9月25日号のNeuronに掲載されている。タイトルは「A Rare Mutation of β1 -Adrenergic Receptor Affects Sleep/Wake Behaviors (β1アドレナリン受容体の稀な突然変異が睡眠と覚醒の行動を変化させる)」だ。

5世代にわたって4−6時間しか寝られないメンバーが多発する家族の遺伝子を調べ、男女を問わずshort sleeperの全てがβ1アドレナリン受容体(bAR1)の最も保存されている187番目のアラニンがバリンに変わっていることを発見した。さらにこの変異により、bAR1分子が不安定になりcAMP産生が低下する(すなわち機能が低下する)ことを明らかにしている。

誰がみてもshort sleepがbAR1の変異とは全く予想外で、本当かどうかマウスのbAR1に同じ変異を導入して調べている。予想通り、変異マウスの睡眠時間は全体で1時間ほど短い。さらに、起きている時間は普通のマウスより元気に動くこともわかった。すなわち、人の睡眠行動を再現できたことになる。

次にbAR1が発現している脳領域の中で睡眠に関わることが知られている脳のponsに焦点を当て、bAR1を発現している神経細胞の活性が覚醒時とREM睡眠中に高く、ノンREM睡眠時には活動しないことを発見する。すなわちPons背側の細胞が、覚醒を調節している可能性が示された。

これを確かめるため光遺伝学的にこの神経を刺激すると、覚醒時刺激が高まってもほとんど変化はないが、ノンREM睡眠時に活性化すると覚醒することがわかり、この神経興奮が覚醒を誘導することが明らかになった。

つぎにbAR1分子を不安定にする変異の脳生理学的検討を行い、夜間のpons背側神経の活動が高まることを発見し、bAR1の変異によりponsの活動の抑制されており、これが外れることで突然変異を持つ人はPons背側の活性が高まり、睡眠時間が低下すると結論している。

一つの家族の解析から、睡眠についての面白いシナリオを導き出すと言う面白い研究だと思う。人間でないと気づかないことがあることがよくわかる仕事だ。

カテゴリ:論文ウォッチ

9月8日 Neurofeedback:自分の脳の活動を知って脳症状を治す(Biological Psychiatryオンライン掲載論文)

2019年9月8日

大正時代にわが国で考案された神経症の治療方法、森田療法は現在も多くの精神科医に採用され、受けることができる。治療の要点は、神経症で現れる不安を取り除こうとせず、自分で認識してそれについて話をするように指導する。他にもプログラムに従った作業療法が行われるが、ようするにありのままの自分を知ることが核になっている。

もちろんこの時、自分の脳の活動を知ることはないが、最近脳の活動を見ながら自分で自分の行動を理解することで症状を取り除くNeurofeedbackと呼ばれるが注目を浴びている。内省的に自分を知るのではなく、主に脳波などを通して記録されている脳の活動を通して自分の脳を知りながら、自分でこの活動をコントロールする方法を習得することで、薬を使わない新しい治療法になるのではと期待されている。

今日紹介するイェール大学からの論文は、原因不明のチック症状を示すトゥレット症候群の症状を、機能的MRIでの脳の活動画像を見せることで治療しようとする試みで、Biological Psychiatryオンライン版に掲載された。タイトルは「Randomized, sham-controlled trial of real-time fMRI neurofeedback for tics in adolescents with Tourette Syndrome (リアルタイムのfMRIを用いたNeurofeedbakのトゥレット症候群の青年のチック治療の、無作為化試験)」だ。

この研究では通常用いられる脳波の代わりに、もっと正確に脳の特定の領域の活動がモニターできるfMRIを用いている。頭以外の場所で常に経験して困っているチックを自分で再現してもらい、その時活動する補足運動野を特定する。

次にこの領域の活動を見ながら、この活動をコントロールして、自分の思うようなパターンになるよう努力してもらう。コントロールの人には、脳の活動とは関係ない最もらしいパターンを見せ、コントロールを試みるように促す。

セッションが終わると、見たのは自分の脳の活動家、それともフェークのパターンかを聞いて、コントロールできるという意識が生まれているかを調べている。

結果は驚くべきもので、コントロールと比べると、チックの回数が約5%低下している。すなわち、チックが起こる運動野をコントロールしようと活動を見ながら努力するだけで、チックの回数を減らすことができると結論している。

実際には、治療中にどのような過程が進行しているのか、もう一つはっきりしない点もあるが、脳波よりはよりピンポイントで活動のコントロールを試みさせる点が、成功の秘訣かもしれない。

その原理はともかく、脳の活動を自覚してチックのような不随意運動を減らすことができるとは驚きで、これが本当なら全く新しい時代が始まった気がする。病気だけでなく、記憶力をあげたり、運動能力を高めたり、いろいろ新手が出てきそうな予感がする。

カテゴリ:論文ウォッチ

9月7日 サソリの毒はワサビの味(9月5日号 Cell 掲載論文)

2019年9月7日

痛み受容体として最も有名なのはカプサイシンや熱に反応するイオンチャンネルTRPV1、これ以外にも様々な刺激に反応するTRPA1がある。例えば、玉ねぎを刻んで涙が出たり、ワサビでヒリヒリするのはこの受容体の反応であることがわかっている。

今日紹介するカリフォルニア大学からの論文はTRPA1(ワサビ受容体と呼ぶ)を強く刺激する物質の一つに黒サソリの毒があること、またその刺激メカニズムを解明した研究で、9月5日号のCellに掲載された。タイトルは「A Cell-Penetrating Scorpion Toxin Enables Mode-Specific Modulation of TRPA1 and Pain(細胞内に侵入するサソリの毒はTRPA1と痛みを様式特異的に変化させる)」だ。

この研究では様々な生物毒を集め、培養細胞に発現させたワサビ受容体の刺激をカルシウム流入で検出する実験系でスクリーニングし、強い毒素としてオーストラリアのblack rockサソリが分泌するペプチドを特定し、ワサビ受容体トキシン(WaTx)と名付けている。そしてこの分子を欠損したマウスを用いて、WaTxがワサビ受容体特異的であることを確認している。

次に、作用メカニズムを、膜の裏表を区別したパッチクランプ法で調べ、WaTxは細胞膜上で反応するのではなく、先ず細胞膜を通過して細胞内に入った後、ワサビ受容体の構造変化に重要な連結部に結合して、チャンネルの開いた状態を維持することで、神経を興奮させることを明らかにする。

WaTxは炎症を全く誘導せずに痛みだけを誘導することができるという、全くユニークな痛み誘導因子としての性格を持っている。同じようにワサビ受容体を刺激できるたとえばマスタードのオイルなどは、痛みを誘導すると同時に必ず炎症が起こる。

話は以上だが、WaTxが発見されたことで、他の複合因子の影響を完全に排除して、純粋にワサビ受容体による末梢神経細胞の興奮メカニズムを研究することが可能になる。しかし、サソリの毒がワサビの味とは驚いた。

カテゴリ:論文ウォッチ

若い人の原因不明の視力低下はジャンクフードを疑え(2019.9.06)

2019年9月6日

Annals Internal Medicineという雑誌にセンセーショナルなタイトル「Blindness caused by Junkfood(ジャンクフードによる失明)という一例報告が掲載された(Harrison et al, Annals Internal Medicine:doi: 10.7326/L19-0361)

17歳ぐらいから急速に視力が低下した視神経症の男性の症例報告だが、よくよく原因を探していくと、子供の時からフライドポテト、ポテトチップス、ハムとソーセージしか食べない偏った食生活のため、ビタミンB12や銅、セレンなどの低下し、それにより視力低下が来たことが明らかになった。

問題は、栄養を正常に戻しても、視力は戻らなかった点で、不可逆的な変化が起こってしまうことを示している。

この満ち足りた世の中で、こんな特殊な栄養失調が起こるなど、医者でもまず考えられない。その意味で、この症例報告は重要だと思う。

9月6日: 寒いと感じるための受容体(9月5日号 Cell 掲載論文)

2019年9月6日

外界の変化を感じるために私たちは様々な感覚受容体を持っている。これまで紹介したように痛みだけでも複数存在するおかげで、ワサビや玉ねぎまで感知できる。温度もそうだ。暑さだってかなり正確に感じることができるし、冷たいを、さめていると区別できる。しかし知らなかったのだが、温度が低い(涼しい)と感じる受容体はわかっていたようだが、寒いと感じる受容体は分かっていなかったようだ。

今日紹介する華中科技大学とミシガン大学が共同で発表した論文は、線虫の変異体のスクリーニングにより「寒さ」を感じる受容体が線虫から脊髄動物まで、グルタミン酸受容体であることを特定した研究で9月5日号のCellに掲載された。タイトルは「A Cold-Sensing Receptor Encoded by a Glutamate Receptor Gene (寒さを感じる受容体はグルタミン酸受容体遺伝子の一つだった)」だ。

この研究で最も面白いと感じたのは、線虫の突然変異レパートリーの中から寒さを感じる受容体を探し出す方法だ。実際には、多くの線虫を適温の20度から10度に変化させて、その時に活動する神経細胞を探し出す必要がある。興奮する神経はカルシウムの流入で調べられるが、温度を何度も変えて確かめるために、この研究ではPCRに用いる96穴のサーマルサイクラーを用いることを着想し、7000以上の個体をサーマルサイクラーで温度を変えながら、寒さに反応する遺伝子が欠損した個体を突き止めている。

このユニークな方法で見つかったのが線虫の腸内に存在する感覚GLR-3と呼ばれるグルタミン酸受容体で、本来の線虫の系で、この受容体が確かに10度という寒いを感じる受容体であることを確認する。またこの特殊な神経が興奮した時に起こると知られている泳ぐ方向性のターンが低温で誘導できることを明らかにしている。

次に、GLR-3に対応するマウス遺伝子GluK2を特定し、この受容体が線虫の細胞で同じよう寒いを感じる受容体として働けること、寒いの感覚にはチャンネルは必要なく、いわゆるメタボトロピックと呼ばれる機能、すなわちGタンパクを介するシグナル分子として働いていること、そして皮膚から後根神経節へ感覚を伝える神経の一部がGluK2を発現して、寒さを伝えていることを明らかにしている。同じ受容体は魚から人間まで保存されているようなので、寒さの感覚は線虫のような早い段階で進化して、脊髄動物が進化しても変わらずそのまま人間まで維持されてきたことがわかる。

結果は以上で、サーマルサイクラーで温度変化を実現したという点に感心したと同時に、感覚といっても本当にわかっていないことが多いことを思い知った。

カテゴリ:論文ウォッチ

9月5日 場所の記憶が維持される神経過程(8月23日号 Science 掲載論文)

2019年9月5日

2014年、オキーフとモザー夫妻がノーベル医学・生理学賞に輝いたが、その時もっぱら脳内のGPSの発見などと報道された。しかし実際にこの研究の示した最も大きなインパクトは、脳内の多くの神経と行動を同時記録することで、脳内に形成される「表象:representation」を実際に観察できることが示されたことだ。当然ノーベル賞に値する素晴らしい業績だ。

今日紹介するカリフォルニア工科大学からの論文は、このオキーフ、モザー夫妻の発見を利用して、こうして形成された脳内の表象が維持される機構を、海馬CA1領域の細胞集団の神経活動の記録から読み解こうという研究で8月23日号のScienceに掲載された。タイトルはズバリ「Persistence of neuronal representations through time and damage in the hippocampus (神経的表象は時間や損傷をこえて海馬で維持される)」だ。

モザーさんたちの研究は持続的に脳の特定の場所全体の活動をクラスター電極を通して細胞レベルで記録することで可能になったが、この手法は現在神経の興奮をカルシウムセンサーで光学的に記録する方法に置き換わっている。ただ、脳内に埋め込んだこのような読み取り装置がどのぐらい長時間、正確に一個一個の神経を区別して記録し続けられるかが問題になる。

この研究ではなんと8ヶ月ぐらいは海馬のCA1領域の5000個を越す神経細胞を同時に記録できるという装置を工夫し、これを用いてモザーさんたちと同じ場所記憶の実験系で、脳内に形成される表象がどう維持されているのかを調べている。

あとは膨大な記録を行動と対応させることで、場所記憶の表象に関わる神経細胞を特定し、それぞれの神経細胞が時間が経った後も、表象維持に関わるか調べている。具体的には、学習過程でできる場所細胞と呼べる神経表象が、10日間トレーニングなしに休んでいても維持されるのか、またその後どのように表象が消えていくのかなどを調べている。

まずわかるのは、一旦トレーニングで表象が形成されると、それは同じ迷路を毎日走らせようが、ケージで休ませようが同じように維持される、すなわち同じ細胞の興奮として維持されていることだ。

しかし、時間が経つとこの表象を担う細胞の数は大体1日1%づつ減っていく。それでも同じ迷路にもう一度入ると、表象としてしっかり機能することもわかる。さらに、この表象は海馬の一部を障害しても、障害された直後は乱れるが、傷が回復すると完全ではないがかなり回復することも明らかになった。

おそらくこの研究の最大のハイライトは、同調して興奮する神経細胞のペアを特定して、その活動と行動を対応させた実験で、表象を担う細胞がコンスタントに失われ、現実的には45日目で消失してしまう場合も、同調する神経ネットワークは維持され、迷路にもう一度入ると45日目でも同じパターンを再現するという発見だ。

結論としては、少ない数の神経細胞でも、同調的に反応できるネットワークが維持されると、表象に対応する神経細胞自体は減っていっても、もう一度鮮やかに表象を再現できるという話で、実際には予想通りの結果だと思う。1年近く脳記録が可能になることで、これまで神経表象について想像されていたことが確認できたという研究だが、しかし記録して情報処理できるというだけですごい。

カテゴリ:論文ウォッチ