12月15日 つわりのメカニズム(12月13日 Nature オンライン掲載論文)
AASJホームページ > 新着情報

12月15日 つわりのメカニズム(12月13日 Nature オンライン掲載論文)

2023年12月15日
SNSシェア

つわりについては妊娠に伴うホルモンが上昇し、脳の嘔吐中枢などを刺激すると説明されているが、なぜつわりのない人がいるのかなど、実際にはよくわかっていない。ただ、最近になって、身体のストレスによって誘導され、脳幹に働いて食欲を抑え、炎症を抑える効果があるGDF15が妊娠中に増加し、これがつわりの原因ではないかと考えられるようになった。

今日紹介する南カリフォルニア大学からの論文は、GDF15とつわりの関係について様々な角度から検討し、GDF15がつわりの原因であることを明らかにした研究で1、2月13日 Nature にオンライン掲載された。タイトルは「GDF15 linked to maternal risk of nausea and vomiting during pregnancy(GDF15は妊娠中の悪心と嘔吐に連結できる)」だ。

これまでの研究でGDF15は妊娠中に上昇しつわりを起こすと考えられるのに、GDF15の機能喪失変異ではつわりがひどくなるという、矛盾する結果を説明できていなかった。

この研究ではまず、妊娠中に母親の血中GDF15が上昇すること、さらにこのほとんどが胎児由来であることを明らかにする。また、これまでつわりの強さと関わるGDF15では変異の結果GDF15が細胞外へ分泌できないことも確認している。

とすると、GDF15の元々低い母親が、GDF15を正常に分泌する子供を妊娠したときにつわりがひどくなる可能性が示唆される。これを確かめるため、母親だけが変異を持っている場合、そして母親も胎児も変異を持っている場合でつわりを比べると、母親だけが変異を持つ場合は100%つわりが発生するのに対し、子供も変異を持つとつわりの発生頻度が6割程度に低下することを確認する。

さらに、つわりと相関するコーディング領域以外の一塩基変異について調べると、おそらく調節領域の変異で、正常時のGDF15レベルが低下していることを確認する。

以上の結果から、GDF15が元々低い母親が妊娠する場合、胎児からのGDF15の影響が強く表れることを示している。

最後にこの可能性を確認するため、マウスにGDF15を注射して一定期間経過後、もう一度GDF15を投与する実験を行い、一度GDF15を経験すると、次からのGDF15の影響が軽減することを確認する。

以上、GDF15に対する反応は、おそらく受容体の適応により刺激後低下すると考えられる。このため、GDF15機能が低下した変異を持つ母親では、受容体の適応が起こらず、GDF15に対する高い感受性が維持されている。そこに妊娠により胎児からのGDF15が入ってくると、強い反応が起こるというわけだ。

この仮説を逆から確かめるため、GDF15レベルが高いことがわかっているタラセミアの妊婦さんを集めると、期待通りつわりがほとんど発生していないことがわかった。

以上のことから、胎児への影響がないという前提で、GDF15を標的にしたつわりの治療は可能になった。

カテゴリ:論文ウォッチ

12月14日 mRNAワクチンの落とし穴(12月6日 Nature オンライン掲載論文)

2023年12月14日
SNSシェア

Covid-19に関わる科学を代表する技術といえばmRNAワクチンだろう。そして、これを支える技術が昨年ノーベル賞を受賞したカリコさん達の修飾RNAといっていい。私もこのワクチンの開発スピードと効果について何度も紹介した。

シュードウリジンはmRNAに対する自然免疫反応を抑える目的で使われるが、私だけでなく、これまでそれを取り込んだmRNAは翻訳の鋳型としては問題がないと考えてきた。しかし、今日紹介するケンブリッジ大学からの論文は、シュードウリジンを取り込んだmRNAには、フレームがずれたペプチドを翻訳してしまうと言う思わぬ落とし穴があることを示し、今後シュードウリジンを取り込んだmRNAを使うために必要な塩基配列デザイン法まで示唆した重要な研究で、12月6日 Nature にオンライン掲載された。タイトルは「N 1 -methylpseudouridylation of mRNA causes +1 ribosomal frameshifting(シュードウリジンmRNAはリボゾームで一塩基のフレームシフトを誘導する)」だ。

驚くことに、N1 がメチル化されたシュードウリジン(メチルΨ)を用いたmRNAの翻訳効率についてはほとんど研究がなかったようだ。要するにこれほど普及しているにもかかわらず、非修飾mRNAと同じように翻訳されると思い込んでいたことは、科学として猛烈に反省が必要だろう。そのことに気づいたこの研究グループは、フレームがずれると初めて機能的蛋白質が出来るmRNAをデザインし、メチルΨと非修飾mRNAとで比べ、メチルΨを用いたときだけ、フレームがずれた酵素活性を持った蛋白質が作られることを確認する。

そこで、ビオンテックのRNAワクチンに使われたメチルΨを試験管内で翻訳させると3種類のフレームがずれたペプチドが合成される。そして、このワクチンで免疫したマウスは、正常スパイクだけでなく、フレームがずれて出来たペプチドに対してもT細胞反応が起こる。

次にワクチン接種を受けた人間でもスパイク以外のペプチドに免疫が誘導されていないか、アデノウイルスワクチンとmRNAワクチン接種を受けた人について調べると、ビオンテックのmRNAワクチン接種を受けた人の2割ぐらいに、フレームがずれたペプチドに対する反応を確認することが出来る。

幸い、Covid-19スパイクに対するワクチンの場合、フレームがずれて出来たペプチドに交叉する例えば自己蛋白質などがなかったため、問題は発生しなかったが、今後メチルΨを他の抗原を標的として使うとき、想定外の抗原に対する反応が副作用として発生する可能性がある。

そこで、まずフレームがずれる翻訳が起こる原因を調べていくと、アミノ酸と結合したアミノアシルtRNAとの結合力が変化したため、リボゾーム上での翻訳が止まってしまい、これを動かすためにスリップして他のtRNA と結合する結果であることを突き止める。

リボゾーム上での翻訳が停止させやすいコドン配列は特定できるので、アミノ酸はそのままでコドンだけを変異させると、メチルΨを用いてもフレームのずれを抑えることに成功している。すなわちこの問題をかなり解決することが可能であることを示している。

以上が結果で、今後メチルΨを用いる場合は慎重に翻訳反応を検討し、フレームがずれない配列に設計し直すことが重要であることがよくわかる。今後mRNAを様々な目的に使って行くためには大変重要な貢献をした研究だ。

モデルナやビオンテックのmRNAワクチンが発表されたとき、既に蓄積されていたSARSワクチンの経験から、自然の塩基配列でなく、わざわざ突然変異を導入してスパイク構造を安定化させたデザイン配列を使っているのに驚いた。すなわち、知識にもとづいてデザインすることの重要性だが、今後はフレームシフトを防ぐデザインが必須になる。反省と対策を繰り返す科学の健全性についてもよくわかる論文だと思う。

カテゴリ:論文ウォッチ

12月13日 睡眠中外界の刺激に煩わされないメカニズム(12月8日 Cell オンライン掲載論文)

2023年12月13日
SNSシェア

野生動物にとって睡眠は極めて危険な状態なのに、なぜ睡眠に依存するようになったのか、進化の謎だとよく言われる。しかし、ペンギンのうたた寝もそうだが、この危険を克服できる知恵を身につけた動物が生き残ることを考えると、睡眠が逆に脳の進化を促進している可能性もある。いずれにせよ、睡眠中は外界からの刺激に煩わされないことがぐっすり眠るための条件になる。

今日紹介するカリフォルニア大学バークレー校からの論文は、ノンレム睡眠でぐっすり寝ているときに外界の刺激に煩わされないための神経回路を探った研究で、12月8日 Cell にオンライン掲載された。タイトルは「Circuit mechanism for suppression of frontal cortical ignition during NREM sleep(ノンレム睡眠中の前頭皮質の興奮を抑える回路)」だ。

睡眠中に一次感覚野が正常に興奮することは知られているので、刺激に煩わされない理由は一次感覚野から先の神経興奮が抑制されるからと考えられる。そこで、この研究ではまず一次視覚野を光遺伝学的に刺激したとき起こる、他の脳領域への興奮伝搬について、睡眠中と覚醒時を比べている。

この実験にはまず脳全体の興奮を調べる必要があるが、この目的で使われた方法が変わっていて、私も初めて見た。実際、こんな方法があるのかと思ったのが、この論文を取り上げることにした決め手になった。脳内の神経伝搬により血流が変化することが知られており、機能的MRIの基盤だが、この研究では血液量の変化をなんと超音波で検出している。その結果、一次視覚野の興奮は、覚醒時には脳の様々な領域へ伝搬するが、ノンレム睡眠時には特に前帯状皮質への伝搬がつよく抑えられることを発見する。

超音波で本当に大丈夫かと思ってしまうが、伝搬が抑えられる領域が特定されると、今度は神経興奮を直接カルシウム検出で調べ直して、感度は落ちるが超音波でもかなり正確に脳内の神経伝搬を捉えることが出来ると結論している。

このように、一次視覚野から前帯状皮質への神経回路が抑制されることが明らかになると、後は特定の神経集団を標的にした遺伝子改変を行い、この抑制神経回路を形成する神経集団を特定していく。その結果、

  1. 視覚野から前帯状皮質へ興奮を伝えているのは、コリン作動性の神経回路。
  2. この回路を特異的に抑制するのが、PV陽性の抑制性神経。
  3. PV陽性抑制性神経を刺激すると覚醒中でも前帯状皮質への神経伝搬が低下する。

ことを明らかにし、ノンレム睡眠時に外界からの感覚刺激を皮質へと伝搬しない神経回路を明らかにしている。

結果は以上で、今後腹外側髄質から視交叉上核と続くノンレム睡眠誘導中枢と、PV陽性抑制神経との関係がわかれば回路は閉じることになると思う。わざわざこんな回路を持っていることからも、ぐっすり眠ることの重要性がわかる。

カテゴリ:論文ウォッチ

12月12日 染色体ごとの遺伝子発現調節(12月7日号 Nature 掲載論文)

2023年12月12日
SNSシェア

X染色体はオスでは1本、メスでは2本存在する。そのまま遺伝子発現が起こるとX染色体上の遺伝子の発現量はオスとメスで2倍の差が出るので、これを調節する必要がある。哺乳動物の場合、X染色体不活化と呼ばれる方法で、片方のX染色体からの遺伝子発現を完全に閉じることで遺伝子発現量をオスメスでそろえるのだが、ショウジョウバエではX染色体不活化は起こらない。代わりに、オスのX染色体遺伝子発現量を高めるメカニズムがあり、これに関わるのがMSL遺伝子だ。MSLとは male specific lethal の略で、この遺伝子が欠損するとオスのX染色体上遺伝子発現を倍加できないので、オスだけが死んでしまうのでこの名前がついている。MSLの機能は詳しく解析されており、MSL1、MSL2、MSL3、MOFからなる複合体により、特異的なヒストンアセチル化により遺伝子発現を高めることがわかっている。

以上の予備知識がないと、今日紹介するフライブルグ・マックスプランク免疫学エピジェネティック研究所からの論文は理解が難しいが、ショウジョウバエでX染色体遺伝子発現調節に関わるMSLコンプレックスの哺乳動物での機能を探った研究で、12月7日号 Nature に掲載された。タイトルは「MSL2 ensures biallelic gene expression in mammals(MSL2は哺乳動物でも両方の対立遺伝子空の発現を保証している)」だ。

MSL複合体が哺乳動物で働いていることは、ノックアウトマウスが致死的であることからわかるが、ショウジョウバエのように染色体での遺伝子発現量の調節に関わるかどうか明らかになっていなかった。

この研究ではまず、染色体ごとの遺伝子発現を調べられるように、異なる系統のマウスを掛け合わせたES細胞を作成、そこから分化した神経幹細胞(NPC)を準備し、MSL2遺伝子をノックアウトしたときの核染色体からの遺伝子発現の変化を調べている。

すると、約300種類の遺伝子が、正常では両方の染色体から正常に発現しているが、MSL2遺伝子が欠損すると片方の染色体だけで遺伝子発現が低下してしまうことを発見する。すなわち、片方の遺伝子発現量がMSLの働きで上昇していることがわかる。さらに、このような遺伝子の多くは、ハプロ不全、すなわち片方の遺伝子の変異が、もう片方で代償できない遺伝子であることも明らかにしている。すなわち、哺乳動物でもハプロ不全があると、それを代償すべくMSLによる遺伝子発現調節が行われることがわかる。

以上のように、MSLによるヒストンアセチル化が遺伝子発現に関わる遺伝子標的を特定した上で、

  1. MSLが欠損すると、発現が低下する方の遺伝子で、プロモーターとエンハンサーの結合が消失する。
  2. MSL依存的に遺伝子発現が上昇している遺伝子の発現調節領域にメチル化されるCGリピートが存在している。
  3. MSL が欠損すると、このCGリピートがメチル化される。

ことを明らかにしている。

以上の結果から、常染色体でも遺伝子発現調節配列の多様性の結果、片方の染色体の遺伝子発現が低下してしまう、ハプロ不全を示す遺伝子が存在する。この発現の差は、調節領域のCGリピートの違いに依存するが、この違いをMSLはヒストンアセチル化を通してCGリピートのメチル化を防ぐことで、プロモーターとエンハンサーの相互作用を維持して代償していることになる。

我々は、遺伝子の多様性を高めることで、種としての強さを保っているが、その副作用としてハプロ不全が起こる。これをショウジョウバエと同じ機構で調節することで、雑種としての強さを維持していることがよくわかった。

カテゴリ:論文ウォッチ

12月11日 全く新しいインシュリン抵抗性発生経路(12月5日 Cell オンライン掲載論文)

2023年12月11日
SNSシェア

糖尿病は膵臓β細胞のインシュリン分泌能が低下する病気だが、2型糖尿病ではこの状態が発生する前、肥満などの代謝異常によりインシュリンが効きにくくなるインシュリン抵抗性が先行する。主に肥満や炎症などが最終的にインシュリンシグナル経路の蛋白質を変化させ、インシュリンによるシグナルが入りにくくなる状態で、糖尿病治療にとって重要な介入ポイントだが、最近の抗糖尿病剤の驚くべき進展と比べると、開発は遅い。

今日紹介するクリーブランド・ケースウェスタンリザーブ医科大学からの論文は、インシュリンシグナルの起点、インシュリンβ受容体とIRS分子複合体がSCAN分子によりニトロシル化されることがインシュリン抵抗性を誘導していることを明らかにした重要な研究で、12月11日 Cell にオンライン掲載された。タイトルは「An enzyme that selectively S-nitrosylates proteins to regulate insulin signaling(蛋白質を選択的にS-ニトロシル化する酵素がインシュリンシグナルを調節している)」だ。

ニトロシル化は活性窒素による蛋白質の修飾反応と考えられ、脱ニトロシル化酵素については発見されてきたが、蛋白質のニトロシル化に直接関わる酵素はこれまで特定できていなかった。

この研究は生化学のプロフェッショナルと言える研究で、まずニトロシル反応のコファクターとして働いていると考えられる SNO-CoA と結合する蛋白質を探索し、最終的にこれまでフラビン代謝に関わる以外に機能がよくわかっていなかった Biliverdin reducatase B(BLVRB) を特定する。さらに、この分子が欠損すると、50種類の蛋白質がニトロシル化されないことを確認し、この分子を SNO-CoA に補助されたニトロシル化酵素SCANと命名する。

次に、蛋白質のニトロシル化過程を調べ、まず SNO-CoA を用いた自己ニトロシル化反応がおこり、次に標的蛋白質と結合して特定のシステイン残基をニトロシル化することを明らかにする。極めて単純化して結論だけ述べたが、膨大な実験に基づく生化学研究のお手本だ。

そして、SCANによりニトロシル化される47種類の標的蛋白質の中から、インシュリンβ受容体(INSR)と IRS1 の複合体に焦点を絞り、ニトロシル化の機能を調べている。結果は極めて重要で、INSR/IRS1 がニトロ化されると、インシュリンシグナル伝達が低下する、すなわちインシュリン抵抗性が生じることを明らかにしている。また、ノックアウトマウスモデルを用い、遺伝的肥満や高脂肪食によりニトロシル化された SCAN が上昇し、その結果 INSR/IRS1 のニトロシル化が促進され、インシュリン抵抗性が生まれることを明らかにしている。

最後に脂肪代謝異常とSCAN活性化の関係を調べ、iNOS、nNOS、eNOSの活性化によるNOの細胞内での上昇がニトロシル化SCANの細胞内濃度を上昇させ、これが INSR/IRS1機能を阻害することを示している。また、iNOSは主に脂肪代謝異常により活性化されるが、nNOS、eNOSはインシュリン下流のAKTによりリン酸化されることで活性化される、まさにインシュリンシグナルのフィードバック回路として機能していることを示している。

結果は以上で、おそらくこれまで全く知られなかった、しかし活性化に関わる条件から見ると極めて重要なインシュリン抵抗性発生機構が明らかになり、結果SCANニトロシル化が重要な創薬ターゲットになることを示したと思う。

この研究ではインシュリン受容体のニトロシル化に集中しているが、他にも多くの蛋白質が特定されているので、今後新しい知見が多く得られるのではと期待される。

カテゴリ:論文ウォッチ

12月10日 B細胞とT細胞抗原受容体の空間的分布を調べる(12月8日 Science 掲載論文)

2023年12月10日
SNSシェア

免疫組織や腫瘍組織で起こっている免疫反応は、空間的階層性を持っていると考えられている。すなわち、抗原の存在場所を起点に、増殖や移動が調節される。その最たる物が、胚中心で濾胞樹状細胞の周りに大きなB細胞のクローン増殖と多様化が起こることが知られている。ただ、この空間的階層性はこれまで、組織の一部を切り出して、遺伝子発現を調べる方法を用いて行われ、組織で進行するB細胞抗原受容体(BcR)やT細胞抗原受容体(TcR)のクローン性や多様性を組織上でそのまま検出するのは難しかった。

今日紹介するスウェーデンカロリンスカ研究所からの論文は、スライドグラス上に異なるバーコードを持ったRNAトラップを敷きつめ、発現する遺伝子の空間的位置を特定できるようにした方法を用いてBcR、TcRのVDJ配列の組織上の分布を調べ、リンパ組織や腫瘍組織で起こっている免疫反応を捉えようとした研究で、12月8日号 Science に掲載された。タイトルは「Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics(B細胞とT細胞抗原受容体の空間的発現解析によりリンパ球クローンの動態が明らかになった)」だ。

2016年、この論文と同じ Frissen研から発表されたスライドグラスにバーコード付きのRNAトラップを敷き詰め、遺伝子発現分布を組織上に再構成する方法について紹介したが(https://aasj.jp/news/watch/5490)、この研究では同じ方法を用いて、BcRやTcRの分布を明らかにし、局所での免疫反応を解析しようとしている。この方法に最も相応しい課題で、なぜもっと早くできなかったのかと思うが、読んでみると一つのバーコードで決められる場所に複数の細胞が入ってしまうため、TcRαとβ、あるいはBcRのH鎖とL鎖をペアリングすることが難しかった様だ。この研究では確率計算からペアリングを決める方法を開発しているが、完全に解決できているわけではなく、やはりバーコードの範囲をもっと絞って、単一細胞の遺伝子発現を特定できないと、どうしても曖昧さは残る。

この限界を理解した上で、それでも抗原受容体のレパートリーの分布を組織上にマッピングすることの重要性はよくわかる。

まずヒト扁桃組織で方法の特性、例えばB細胞のクローンの検出のしやすさやT細胞の分布様式を調べて、クローン増殖や移動を追跡できることを確認した後、乳ガン組織を調べ、B細胞のクローン増殖もみられるリンパ組織様のクラスターが腫瘍組織に検出できること、またT細胞は腫瘍と環境の境界領域でクローン増殖している可能性などを示している。今後αβの正確なペアリングが可能になれば、ガン抗原に対する反応を正確に追跡できる可能性がある。

そして、リンパ球の増殖と多様化が起こるリンパ濾胞について同じ検討を行っている。期待通り、濾胞内でB細胞はクローナルな増殖とともにBcR多様化を起こす。そして多様化した細胞が他の濾胞へと移動するのも検出できる。一方、多様化と共に起こると考えられるクラススイッチについては、まず濾胞外で起こった後、可変領域の多様化が起こることを示している。

結果は以上で、免疫反応を組織上で解析できる可能性が示されたことは大きいが、結果自体はこれまで知られていたことがほとんどだ。そしてB細胞の動態解析の方にこの方法が向いていることもよくわかった。したがって、今後は感染症やワクチン接種でのB細胞の動態解析にまず使っていくのが面白いと思う。

カテゴリ:論文ウォッチ

12月9日 新しい前頭側頭型認知症の原因特定(12月6日 Nature オンライン掲載論文)

2023年12月9日
SNSシェア

前頭側頭型認知症(FTD)は認知症の1割を占め、海馬の神経変性が中心におこり記憶障害が中心になるアルツハイマー病と比べると、前頭側頭皮質の障害が中心になり、行動、人格、言語などが傷害される。また一部には運動障害が顕著で、ALSと間違えられるケースもある。

このようにアルツハイマー病とははっきり異なるが、ほぼ半数はTau異常症による蛋白沈殿が原因で、あとの半数はALSの原因にもなるTDP-43異常症による沈殿形成に依ることがわかっている。

今日紹介する英国MRC研究所からの論文は、これら2種類の蛋白質異常症以外の原因で起こるFTDがTAF15分子による、特に運動障害が顕著なFTDであることを明らかにした研究で、これによりほとんどのFTDの原因が明らかになったと言える。タイトルは「TAF15 amyloid filaments in frontotemporal lobar degeneration(TAF15アミロイド線維による前頭側頭変性症)」だ。

これまで、Tau、TDP-43以外が原因のFTDでも、FUS蛋白質に対する抗体で染色される沈殿物が観察されること、また試験管内でFUS蛋白質断片が繊維状沈殿を形成することから、FUS異常症ではないかと考えられてきた。ただ、検出に利用される抗体が同じファミリーの分子、EWSやTAF15にも反応することから、最終的には脳からアミロイド繊維を抽出して特定する必要があった。

この研究では抗体での染色からFUS異常症と診断される患者さんの脳から生化学的にアミロイドフィラメントを抽出し、クライオ電顕による構造解析、及び質量分析による分子解析の結果、フィラメント内には全くFUS分子が含まれておらず、これまでFUS異常症として考えられてきたFTDのほとんどはTAF15異常症による可能性が示された。

特に重要な点はTAF15のアミロイド繊維によるFTDで運動障害が著しい点で、今回調べられた4例の中の一人の患者さんではALSと診断を受けていたようだ。

以上が結果で、Tau、TDP-43に加えて、新しい細胞内アミロイド繊維沈殿を起こす分子としてTAF15が特定されるとともに、FTDはこれまで想像されてきたように、沈殿する分子によって傷害される場所が異なり、それぞれ特徴的な症状を示すことも明らかになった。

このように、蛋白質は異なるが、FTD、そしておそらく他の神経変性疾患も、メカニズムは極めて良く似ていることが示された。現在アルツハイマー病のTau異常症を治療する試みが進められているが、これが可能になると、それぞれの蛋白質に対しても同じような治療が可能になるのではないかと期待できる。アルツハイマー病やFTDはこれまで医学の無力をあざ笑っている病気の代表だったが、一歩一歩糸口が見えている気がする。

カテゴリ:論文ウォッチ

12月8日 抗IL-4抗体が肺がんに対する免疫治療を高める(12月6日 Nature オンライン掲載論文)

2023年12月8日
SNSシェア

チェックポイント治療効果を高めるための様々な方法の臨床治験が行われているが、今日紹介するのは既にアトピーの臨床に用いられている IL-4 に対する抗体が非小細胞性肺ガンの免疫治療に利用できることを示したマウントサイナイ医科大学を中心とする多くの機関が参加した研究で、12月6日 Nature にオンライン掲載された。タイトルは「An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis(骨髄での IL-4シグナル基軸が腫瘍を促進する顆粒球増殖を誘導する)」だ。

このグループは非小細胞性肺ガン(NSCLC)の腫瘍環境で免疫を抑えている要因を研究する中で、IL-4の役割を突き止め、さらに抗 IL-4抗体で腫瘍の増殖を抑えられることを報告していた。

ただこの時ガンと周囲組織の相互作用の問題として捉えていた IL-4シグナルの発現を詳しく調べると、ほとんどガン組織で発現が見られないことに気づき、この研究が進められたと思う。ガン局所の問題でないため、実にいろいろ実験を重ねる必要があり、論文で示されているが、最終的に到達したのが以下のようなシナリオだ。

まず、NSCLCが肺で増殖すると、ガン自体及びその環境から様々なサイトカインが誘導されるが、そのうちの8種類は好塩基球やマスト細胞に働いて、IL-4を誘導する。すなわち、ガンが発生すると、サイトカインが循環を通して骨髄に入り、これが骨髄で作られる好塩基球に働き、骨髄内での IL-4濃度が高まる。この結果、好中球やマクロファージの前駆細胞の分化が促進し、この細胞がガン局所に移行してガンに対する免疫を抑える環境成立を助けるというシナリオだ。

実験自体は複雑で、必ずしもこのシナリオが全てかどうか納得できない点もあるが、IL-4受容体を骨髄球からノックアウトするとガンの増殖が強く抑えられるという結果は明確で、さらにマウスモデルで PD-1 に対する抗体と、IL-4に対する抗体を同時に投与すると、ガン抑制の相乗効果が見られる結果も信頼できる。

すなわち最終的なメカニズムはともかく、IL-4に対する抗体を PD-1抗体治療に組みあわせる可能性が生まれた。幸い、抗 IL-4抗体は重症アトピーに対する治療として用いられており、いつでも使える状態にある。

この研究でも最後にコントロールを置かないパイロット治験として、PD-1抗体に反応しない患者さん6人に抗 IL-4抗体投与を3クール行い、経過を見ている。するとほぼ全例で、炎症性サイトカインのレベルが高まり、また末梢血のCD8T細胞の数が増える。

さらに3例については組織バイオプシーでCD8T細胞や、B細胞の数が上昇していることが確認できる。そして、1例ではあるが、X線検査でガンがほぼ完全に消失し、寛解誘導できたことが示された。

結果は以上で、何よりも我が国でも認可されている IL-4に対するモノクローナル抗体を肺ガンの免疫治療に利用する理屈と実際の効果が示されたことは大きい。

最後に個人的感想だが、PD-1抗体治療は言わずと知れた本庶先生がノーベル賞を受賞した業績だが、今回組み合わされた IL-4遺伝子クローニングも、1986年本庶研から報告された。この二つが組み合わされると、より強力なガン治療になるとすると因縁めいているが、面白いのは、PD-1も IL-4も本庶先生のライフワーク、クラススイッチ研究の中から生まれた一種の副産物で、これが今や免疫力のシンボルになっているのを見ると、研究の出口など到底計画できるものでないことがよくわかる。出口・出口とお題目を唱える助成当局もその辺をしっかり理解し、科学力をそいでいるのは当局の責任だと認識してほしいものだ。

カテゴリ:論文ウォッチ

12月7日 初期糖尿病の統合的研究(12月4日 Nature オンライン掲載論文)

2023年12月7日
SNSシェア

先日91歳になられた井村元京大総長とゆっくり飲む機会があった。京大再生研やSchool of Public Health開設、さらに神戸CDBの設立まで、ほぼ20年にわたってプロジェクトを一緒に進めてきた思い出の多いお付き合いだ。91歳になられた今も、当時と変わらない頭の冴えに驚いたが、それだけでなく、体型も以前のままで、その上私と同じ量の食事を平らげられたのには感心した。その井村先生が、今でも理解したいとおっしゃっているのが、なぜ日本人の2型糖尿病患者さんには欧米のような肥満が少ないかという疑問だった。

実際、2003年筑波大学医学部の山田さん達は、日本人の2型糖尿病患者さん2200人のBMIが23.1に対して、英国の平均が29.4と大きく違うことを The Lancet に報告している。すなわち、肥満が続いてインシュリン抵抗性が形成される前に、日本人は膵臓でのインシュリン分泌が低下する可能性が高い。実際、東大の門脇さん達によって、日本人糖尿病のメタゲノム解析が行われ、GLP-1受容体の日本人特有の変異も発見されているが、まだまだ明確な答えはない。

ただ、糖尿病の遺伝リスク解析の中から因果性を導き出すのは簡単でない。その一つの原因は、マウスをモデルとして使えない多くの要因があるからだが、今日紹介するバンダービルド大学とミシガン大学空の共同論文は、この問題を初期糖尿病患者の臓器ドナーから得られた膵島細胞を利用して、ゲノム、臨床、細胞生理学を統合した研究を行うことで、長年の糖尿病の問題を解決した研究で、12月4日 Nature にオンライン掲載された。タイトルは「Genetic risk converges on regulatory networks mediating early type 2 diabetes(初期糖尿病に関わる遺伝リスクは遺伝子発現調節ネットワークに集約した)」だ。

研究では、インシュリン分泌が低下した糖尿病患者さんの膵島の遺伝子発現等々のオミックス、組織学的検討、そして培養やマウスへの移植による機能検査を行い、インシュリン分泌不全の原因を探っている。

これまで、初期糖尿病ではβ細胞数が減り始めている可能性が示唆されていたが、今回調べた20人はβ細胞の量、さらにはインシュリン合成は全く正常だが、グルコースの刺激に対して起こるインシュリン分泌反応が低下しており、この性質はマウスへ移植した後も続くことを明らかにした。すなわち、初期糖尿病はβ細胞のインシュリン分泌に関する生理学的機能異常であることが明らかになった。

次にこの機能不全の原因を遺伝子発現解析やクロマチン解析を用いて調べ、糖、脂肪、アミノ酸代謝、さらにはインシュリン分泌に関わる、いわばドンピシャの分子セットに加え、なんと細胞膜の繊毛形成に関わる分子の発現異常が存在することを発見する。さらにこうして糖尿病膵島での発現異常が明らかになった遺伝子の多くは、ゲノムリスク解析で相関が見つかっている遺伝子を多く含んでいる。

発現異常が特定された遺伝子の中で、最も上流にあると注目したのが膵臓発生異常の原因として知られるRFX6転写因子で、正常β細胞でノックダウンすると、2型糖尿病患者β細胞と良く似た遺伝子発現パターンを示し、さらに細胞生存には問題ないが、インシュリン分泌が低下することを発見する。そして、ゲノム解析でもRFX6の発現に関わるイントロンの多型が、糖尿病リスクとしてリストされていることを明らかにしている。

以上が結果で、発生過程に関わる分子として知られるRFX6が2型糖尿病を決める重要なマスター遺伝子の一つであることがわかった。今後、例えばオランダ飢餓研究、あるいは日本人集団など、インシュリン分泌不全が起こりやすい集団での研究は極めて面白く、日本人型の糖尿病を考えている手がかりになるかも知れない。しかし、これだけのことを人間の膵島を使って研究できる時代が来たことは、井村先生も驚かれるように思う。

カテゴリ:論文ウォッチ

12月6日 αFoldに一つの蛋白質が取り得る複数の構造を予測させる。(11月13日 Nature オンライン掲載論文)

2023年12月6日
SNSシェア

αFold2はアミノ酸配列から蛋白質の立体構造を予測する革命的なモデルで、このおかげで今や何億という分子の蛋白構造がかなり正確に解読された。そして何よりも、αFoldこそ、今、世の中の最大関心事になっているGPTなど大規模言語モデルの基盤 Transformer/attention モデルをいち早く使って成功した言語モデルと言える。

私自身は現役の研究者ではないので利用したことはないが、基本的にαFoldは一つのアミノ酸配列に対して一つの構造がモデル化されるシステムになっている。ただ、蛋白質の中には、安定的に複数の構造を取り得る分子が知られており、今日紹介する Brandeis University からの論文は、αFoldに複数の構造をモデル化させるための方法を示した研究で、11月13日 Nature にオンライン掲載された。タイトルは「Predicting multiple conformations via sequence clustering and AlphaFold2(配列をクラスター化してαFold2に複数の構造を予測させる)」だ。

最初に断っておくが、構造解析とAIの方法の詳細に関して、他の分野と比べると私の理解は極めて乏しい。従って、かなり一般的で大雑把な理解の上で、論文を面白いと楽しんでいる。そこで、今回は思い切った単純化をして論文を説明する。さらに正確な理解が必要な人(例えば利用したい人)は原論文を読んでほしい。

さて、αFold2が構造を予測する方法は、構造を知りたいアミノ酸配列に対応させることが出来る、出来るだけ多くのアミノ酸配列データベースから抜き出し、それをもとに Multiple sequence alignment させることから始まる。これにより、アミノ酸配列を特定の蛋白質の系統進化にリンクさせ、蛋白進化を制限する3次元構造がコンテクストととして浮き上がるように設計されている。

この時出来るだけバイアスが入らないようにアラインメントをとることで、一つの構造にたどり着けるように出来ているが、その結果メタモフフィック蛋白質のように2種類の安定構造がある場合でも、一つしか出てこない。GhatGPTで様々な答え方があるのに、一つの答えしか返ってこないのと同じだ。

そこで著者らは2種類の安定構造をとるKaiB分子の構造を決めるとき、Multiple sequencing alignmentのトップ50、及びトップ100を指示して計算させると、それぞれ異なる構造モデルが提供されること、そしてこれらが熱力学的に安定な構造であることを確認する。

すなわち、アラインメントをとった蛋白質構造のコンセンサスが異なる構造に対応することで、これらの蛋白質の配列から一つの構造から、もう一つの構造へとスイッチするために必要なアミノ酸変換についても推察し、実際に3種類のアミノ酸を置換すると、スイッチした構造に安定してしまうことも示している。

最後に、このようにメタモルフィックな構造がわかっている分子ではなく、他の構造可能性が知られていない分子についても、アラインメントが得られる蛋白質の種類をあらかじめ変えて計算させることで、これまで知られなかった新しい構造がモデル化されることを示している。

要するに、コンテクストをうまく変えることが出来れば、出てくる結果を変えることが出来るという話で、Transformer/attentionモデルから考えれば当然の結果だろう。間違っているかも知れないが、一種のトランスファー学習で、どの分野でも大規模言語モデルを活用する一つの鍵が、こんなところにあるように思う。

カテゴリ:論文ウォッチ