2023年2月23日
コロナパンデミックまっただ中の2021年1月30日、なぜコウモリが様々なウイルスのキャリアーになれるのかについての総説を紹介した(https://aasj.jp/news/watch/14882)。一言で言うと、ウイルスへの自然免疫を維持しつつ、炎症を切り離せたことで、症状の出ないウイルス感染が可能になっていることが、このウイルスの特殊性を支えている。とはいえ、この秘密を完全に理解するにはさらなる細胞学的な研究が必要になり、そのためには様々な組織細胞が自由に得られることが重要になる。
「様々な組織細胞が自由に得られる」という目的にiPS細胞が今やスタンダードとなっているのは周知の事実だが、コウモリではまだ出来ていなかったようだ。今日紹介するニューヨーク、マウントサイナイ・Icahn医科大学からの論文は、コウモリのiPS細胞樹立に成功したところ、多能性幹細胞自体がウイルスのインキュベーターのような特徴を備えていたという驚くべき論文で、2月21日 Cell にオンライン掲載されている。タイトルは「Bat pluripotent stem cells reveal unusual entanglement between host and viruses(コウモリの多能性幹細胞はホストとウイルスの異常なもつれを明らかにした)」だ。
タイトルにある entanglement という単語もそうだが、イントロダクションを読み始めて、書き様の印象がかなり普通とは違うので、著者を見るとラストオーサーの Thomas Zawaka を見て納得した。初めて会ったとき、彼はヒトES細胞樹立で有名な Thomson研究室からちょうど独立した頃で、様々な分野についての広い知識が話の端々に現れて強い印象を受けたことを覚えている。
その懐かしい彼が、様々なウイルスインキュベーターだけでなく、身体機能でみても心拍数が1000にもなるコウモリに注目して、iPS細胞作成を試みたのはよくわかる。ただ、山中4因子を導入すればそれでおしまいと言うほど簡単ではなかった様で、Sendaiウイルスベクターを用いた遺伝子導入に加えて、特別な培養条件を工夫することで、ヒトES細胞と同じような速度で増殖を続けるiPS細胞の樹立に成功している。
後は、分化能、マウスに移植したときの腫瘍形成、多能性ネットワークの遺伝子発現やエピジェネティック解析による確認などを行い、この細胞をiPS細胞と定義してもいいこと、また同じ条件で他の種のコウモリからもiPS細胞を樹立することが出来ることを確認している。
しかし、山中さんのノーベル賞から10年がたっている今、コウモリからiPS細胞を樹立しても、Cellに論文は到底通らない。
この論文の売りは、コウモリiPS細胞の独自性を調べるため、他の種の多能性幹細胞と遺伝子発現を比べたとき、最も大きな違いとして、内因性のウイルスやウイルスに対応する様々な細胞側の遺伝子の発現がコウモリiPS細胞特異的に見られたことを発見したことだ。
例えばレトロウイルスでみると、リプログラム前の線維芽細胞ではほとんど転写されない数多くの内因性のレトロウイルスの転写、翻訳が起こっている。もともと、コウモリはウイルスのインキュベーターになるだけあって、ゲノム上に多くのウイルスゲノムが組み込まれている。これはレトロウイルスだけでなく、通常はゲノムに統合できないとされているコロナウイルスの様なRNAウイルスでも同じで、様々なコロナウイルスの断片が組み込まれたゲノムから、転写、そして翻訳が起こっていることがわかった。
驚くことに、ほとんどのコロナウイルスをカバーする抗体で細胞を染めると、コウモリiPS細胞の細胞質に粒子状の染色が認められ、二重鎖RNAの存在まで確認できることを示している。
以上が結果で、コウモリiPS細胞ではエピジェネティックな変化が整い、内因性のウイルスが転写翻訳されること、そして細胞内ウイルス増殖に耐性を持っているため、転写されたウイルスやウイルス断片の増産を許すインキュベーターとして細胞が働いていることを示している。この、ウイルス耐性の条件についてはこれからの問題になるが、iPS細胞を樹立するだけで、コウモリとウイルスとの絡み合いを検出する手段が出来た点は重要だ。
さらに、以前 Jaenish研究室から発表された、コロナウイルスも状況次第でゲノムに組み込まれる可能性を示す研究も、コウモリが数多くの内因性コロナウイルス断片をゲノム上に組み込んでいるのを見ると不思議でなくなる。
以上、コウモリがウイルスのキャリアー以上の面白さを持つ動物で、コウモリiPS細胞は面白い研究分野を開き、結構ブレークする予感がする。
2023年2月22日
今でこそ細胞表面上のCDマーカーを用いてリンパ球を分画することが当たり前になっているが、私が免疫学を始めた頃は、そんな便利な物は全くなかった。しかし、モノクローナル抗体の技術が導入されると、個々の分子マーカーが定義できるようになり、まず T細胞、B細胞を分けて使えるようになった。その最初の頃に使われた抗原の一つが Ly1、現在の CD5 で、最初は T細胞のマーカーとして使われた。
ところが、Herzenberg 研のメンバーだった、早川さんとHardyが Ly1を発現する B細胞が存在することを発見してから、話はややこしくなった。ここから Ly1 をやめて CD5 と呼ぶことにするが、CD5 は B細胞を B1とB2 に分けるために用いられても、T細胞や他の細胞を分けるマーカーとしてはあまり利用されていないと思う。また、その機能についても、よくわかっていない。
今日紹介するワシントン大学からの論文は、人間とマウスで、CD5 は樹状細胞にも発現し、樹状細胞上の CD5 がT細胞上の CD5 と反応し合うことがガン免疫に重要であることを示した、Ly1時代からこの分子を見てきた年寄りには感慨が深い論文で2月17日号の Science に掲載された。タイトルは「CD5 expression by dendritic cells directs T cell immunity and sustains immunotherapy responses(樹状細胞上の CD5 が T細胞免疫を指揮して免疫治療の反応性を維持する)」だ。
この研究は、ガン周囲リンパ節で、ガンの浸潤があると CD5陽性樹状細胞が低下していること、さらに腫瘍内の CD5mRNAレベルが高い場合メラノーマの予後が良いという、樹状細胞上の CD5 がガン免疫に関わっている可能性を示す臨床研究から始まっている。
この結果は、腫瘍免疫で樹状細胞上 CD5 が何らかの機能を持つことを示しているので、次に CD5陽性及び陰性の樹状細胞で試験管内 T細胞刺激実験を行うと、CD5陽性細胞の方が強い免疫誘導脳があることがわかった。さらに CD5陰性樹状細胞の CD5発現を人工的に高めてやると、それだけでもある程度免疫誘導能が高まり、CD5自体に免疫を高める作用があることを確認している。
その上で、今度はマウスを用いてメカニズムの研究を行い、
- 樹状細胞特異的に CD5発現を低下させたマウスでは、ガン免疫が成立しにくく、チェックポイント治療による免疫増強が起こらない。
- CD5 が低下したマウスでは、反応するT細胞の CD5 も低下している。
- T細胞特異的に CD5 を欠損させるても、同じように腫瘍免疫能が低下する。
という実験結果から、樹状細胞とT細胞はそれぞれの CD5分子を介して、互いに刺激し合うことで、強い抗腫瘍免疫を誘導すること、また腫瘍の環境では、何らかのメカニズムで樹状細胞の CD5 を抑制して、免疫からすり抜けようとしていること、そしてチェックポイント治療がサイトカインの誘導などを介して、樹状細胞の CD5 を維持し、免疫を持続させることを明らかにしている。
以上が結果で、私のような老人にとっては、長い道のりを経て、最初 T細胞マーカーとして使われた Ly1 が、樹状細胞上で相互作用し、ガン免疫を高めていることがわかったという結果は感慨が深い。
しかし、これまで CD5 はフォスファターゼを介し免疫を抑えると考えられていたこと、また PD1抗体を用いたチェックポイント治療がT細胞にのみ効果があると考えられてきたので、この研究が示した方向をもう一度調べ直すことは重要だと思う。
2023年2月21日
昨年1月、指紋の形を分解、各特徴をゲノムワイド多型と参照して、指紋を決める分子を特定するという上海の復旦大学からの論文を紹介した。なかなか面白いと思ったが、よく考えてみると、指紋形成に関わるかもしれない遺伝子多型のリストはできても、ではどのように指紋ができるのか、それぞれの分子はどう関わっているのか、結局分からずじまいで終わっている。これに対して、今日紹介するエジンバラ大学からの論文は、ヒト胎児、指紋形成期の指の組織を詳しく調べるところから始め、誰もが理解し納得出来る指紋形成のメカニズムを示すのに成功している。タイトルは「The developmental basis of fingerprint pattern formation and variation(指紋形成と多様性の発生学的基盤)」で、2月9日 Cell にオンライン掲載された。
結局指紋を研究したければ、まず人間の指で調べる必要がある。指紋は胎生17週ぐらいで完成するようで、その時期の死亡胎児の指を調べると、上皮の増殖ペースの差によって凹みが生じることが指紋のメカニズムであることがわかる。従って、問題はこの増殖の差をパターンとして定着させるメカニズムになるが、指紋のできる腹側、指紋が形成されない背側の皮膚の細胞を single cell RNAsequencing で解析し、それを組織学的に当てはめることで、背腹それぞれに特徴的な遺伝子発現が存在するか、特に上皮と、それを支える間質細胞について調べている。
すると、両側とも例えば Wntシグナルにより皮膚細胞の増殖に関わるEDARの発現が調節されるといった、皮膚形成に関わる基本的な遺伝子を共通に発現しているが、背側や他の皮膚で見られる SHH の発現がないことや、間質の WNT の発現量が低いこと、そして毛根形成に見られる上皮細胞塊直下の間質凝集が見られないことを明らかにし、
1) 指紋形成が皮膚付属器官と同じメカニズムを使って、上皮の増殖スピードを変化させ皮膚の溝を作ること、
2) この上皮の増殖スピードを指先全体の皮膚で変化させるパターンを形成すること、
を介して指紋が形成されることを明らかにしている。
この時期の皮膚の増殖が TGF受容体ファミリー分子の一つ EDAR のシグナルにより調節されている事から、増殖パターンは、EDAR の発現調節によりコントロールされているが、まずこの調節がWNTシグナルにより調節されていることを示している。さらに、WNTの下流 LEF1分子は BMPシグナルで抑制されることも明らかにしている。この結果を合わせると、WNT皮膚増殖活性分子と BMP皮膚増殖阻害分子が、いわゆるチューリング波を形成し、EDAR のパターンを形成していることが示唆された。
さらに詳しく分子メカニズムを見ていくと、皮膚形成時に WNTシグナルを調節する R-spondin の発現場所が波の起点を決めていることが分かった。実際に R-spondin の発現場所だけで全ての指紋パターンが決まるかどうかはまだ研究が必要だが、チューリングはが生まれる起点を2−3箇所設定してシミュレーションを行うと、見事に様々な指紋が発生することがわかる。
結果は以上で、初めて指紋がどう形成されるのか、しっかり理解することができた。また、どうして指紋が遺伝的に似ている個人の間でも違うのかも理解できた。その上で、昨年紹介した論文と比べると、そこで示された EVI1 や NOTCH といった分子は今回のシナリオに全く登場しない。もちろん全くガセネタとは言えないが、結局そこで示された多型は間接的な相関を見ていたことに過ぎないことになる。
最後に、皮膚付属器官用に生まれたメカニズムを使って、わざわざ指紋のような役にも立たない組織をどうしてできたのかを考えると、おそらく指先に神経を集中させたり、汗腺を形成させたりといった必要の中で生まれたのではないかと思う。いずれにせよ、その進化から、長い間個人特定のために利用されてきた指紋が生まれたことは、進化の壮大さを感じる。
2023年2月20日
パーキンソン病だけでなく、レビー小体型認知症、多系統萎縮症などは、最近では αシヌクレイン症としてまとめられる。これは、神経細胞内で αシヌクレインの不溶性繊維形成が見られ、その結果細胞死が起こるという同じメカニズムが背景にあるからだが、たとえば同じメカニズムがどのような神経変化を誘導するのかは、細胞により異なる可能性が大きい。たとえばミトコンドリアへの局在は黒質細胞でははっきりしているが、小脳や大脳では明確ではない。このようにそれぞれの病気を理解するには、αシヌクレイン症とまとめてわかった気になるのは戒めなければならない。
今日紹介するハーバード大学からの論文は、シナプスの小胞の輸送に関わるシナプトタグミン11のパルミチル化が回り回って αシヌクレイン症を軽減する可能性を追求した研究で2月14日号 Science Signaling に掲載された。タイトルは「Palmitoylation of the Parkinson’s disease–associated protein synaptotagmin-11 links its turnover to αsynuclein homeostasis(パーキンソン病に関連するシナプトタグミン11の回転がαシヌクレインホメオスターシスとリンクしている)」だ。
この研究グループは細胞のパルミチル化を除去する酵素を抑制して、パルミチル化を抑えるとレビー小体形成のような αシヌクレイン異常を抑えることを見つけていた。ただ、αシヌクレインはパルミチル化されていないので、この原因を探ろうと今回の研究が始まっている。
実際には、シナプトタグミン11(syt11)のパルミチル化が αシヌクレイン異常症を抑えることを突き止めており、この研究ではパルミチル化が39番目と40番目のシステインで起こっていること、この部位を変異させてパルミチル化を防ぐことで、細胞内での蛋白質の寿命が8割も短くなることを明らかにしている。
またパルミチル化された syt11 の細胞内小胞の不溶部分への局在から、この性質が syt11 の回転を遅らせて、寿命を延ばしていることを突き止める。
最初に紹介したように αシヌクレインも細胞内小胞に局在するので、syt11 がその過程に影響を及ぼす可能性は高い。まず、パルミチル化される syt11 とされない syt11 を発現させた細胞で αシヌクレインの状態を調べると、パルミチル化される syt11 では細胞内小胞膜への局在が高まり、また正常型 αシヌクレイン4量体の割合が低下することを明らかにしている。
では、なぜ syt11 のパルミチル化が αシヌクレイン異常を誘導できるのか?残念ながら syt11 は直接 αシヌクレインと結合しないことから、明確なメカニズムはわからない。おそらく小胞体による syt11 自身のターンオーバーメカニズムが αシヌクレインを巻き込んだと考えられるが、明確には示されていない。
結果は以上で、αシヌクレインの細胞内動態の複雑性を教えてくれるが、間接的にでもパルミチル化という阻害剤が利用しやすい過程を利用したパーキンソン病の進行予防法が開発できるかも知れない。
2023年2月19日
少し専門的な論文紹介が続いたので、今日は少し息抜きの意味で、皆さんもご存じのレンブラントの大作「夜警」に対して行われた、科学的大調査の論文を紹介する。オランダ、フランス、そしてベルギーの研究期間が共同で行なった論文で化学のトップジャーナル Angewante Chemie 国際版にオンライン掲載されている。タイトルは「Lead(II) Formate in Rembrandt’s Night Watch: Detection and Distribution from the Macro- to the Micro-scale(レンブラント夜警で発見されたLead(II) Formate(ビス蟻酸塩):マクロ及びミクロスケールでみた検出と分布)」だ。
アムステルダムの国立美術館に展示されている夜警は 、2019年大調査が行われた(https://www.youtube.com/watch?v=cLH_ur6IAQ8)。このとき、比較的広い範囲の画材の成分を表面から調べるためのX線解析と、採取したサンプルをミクロレベルで調べるシンクロトロン光を用いた解析が行われ、その結果これまで古典的な絵画では見つかったことのない Lead(II) Formate(LF:ビス蟻酸塩)が検出された。
レンブラントはさまざまな画法を開発したことが知られているので、これが彼の技法なのか、あるいは絵の経年変化なのか、対策はあるのかを明らかにする必要が生まれた。特にLFは侵食や分解で検出されることが多く、この区別は重要になる。絵自体に存在するLF沈殿近くの化合物の解析、そして当時の画材を再現した実験的研究を行い、LFの形成過程を探っている。分析や反応実験の詳細を全て省いて結論を述べると、
LFはおそらく鉛ドライヤー(乾燥剤)として使ったPbOが、絵の具作成時に熱せられた油の中でできた蟻酸と反応した結果で、侵食劣化や対策を必要とする問題ではないと結論している。ひょっとしたら、LFが形成されることで、絵画の安定性が増す可能性もあることも考えられる。
ではなぜ今回初めてLFが発見されたのか?元々LFは通常のX線回折法では画材の深いレベルでの検出が難しく、また形成されたLFは深い部分に沈殿することから、シンクロトロンを用いた解析を組み合わせないと検出できないためで、当時の絵画では調べれば見つかると結論している。
ただ夜警については一度全体のニスが剥がされ、新しく塗られている歴史が記録されているので、この作業による特殊性も考える必要がある。その意味で、今後多くの絵画の同じような解析を進めることが重要になる。
以上が結果で、絵画の化学がこのように進展し、一枚でも世界の財産を守る努力が進められているのを見ると、文化遺産を平然と傷つける戦争の愚かさに怒りを覚える。
2023年2月18日
随分昔、2015年6月、神経細胞が興奮すると、トポイソメラーゼ依存性にDNA二重鎖切断が起こり、これがFosなどの興奮直後に起こる転写調節の引き金になっているというMITからの論文を紹介した(https://aasj.jp/news/watch/3560)。すなわちこの結果は、脳の神経細胞はDNA切断を転写の引き金に積極的に使うという危ない橋を渡っていることを示している。もちろん神経細胞が興奮した後も、生き続けて機能しているということは、この切断が正確に修復されていることを示しており、神経細胞では特別の修復メカニズムが存在する可能性を示唆している。
今日紹介するハーバード大学からの論文は、神経興奮直後に誘導されるimmediate early geneの一つNPAS4がまさにこの修復に関わることを示した面白い研究で2月15日Natureにオンライン掲載された。タイトルは「A NPAS4–NuA4 complex couples synaptic activity to DNA repair(NPAS4~NuA4複合体がシナプス活性とDNA修復を結んでいる)」だ。
初めに強調しておくが、膨大なデータに基づく力作で、大変な時間がかかっただろうと想像する。実際22015年の論文でも、神経興奮によるDNA切断の結果上昇する遺伝子としてFosとともにNPAS4が示されており、当然これらと修復の関係が研究されてきたはずだが、この論文までに既に8年近く経過していることはわかっていても、研究を完璧に行うことがいかに大変かを物語る。
この研究では神経興奮後に誘導されるNPAS4の機能を調べるため、まずNPAS4結合タンパク質を探索し、ヒストンアセチル化に関わる巨大分子コンプレックスNuA4とNPAS4が結合していることを発見する。また、神経興奮後に、染色体が開いているプロモーターやエンハンサーに、NPAS4-NuA4がリクルートされ結合が始まることを明らかにする。すなわち、NPAS4は興奮により誘導され、NuA4ヒストンアセチラーゼ複合体を転写が行われているゲノム領域にリクルートする働きがあることが明らかになった。
ヒストンアセチラーゼ複合体は、遺伝子発現調節とDNA修復に関わることが知られているので、まずノックアウトによる転写の変化を調べ、NPAS4とNuA4は一体となって同じ機能を担っており、神経細胞からどちらをノックアウトしても、ほぼ同じ遺伝子発現の変化が起こること、またこの複合体により誘導される遺伝子が神経自体の興奮性を抑えるsomatic inhibitionに関わることを示している。
次に、NPAS4-NuA4複合体がDNA修復に関わる可能性を調べるため、実にさまざまな技術を駆使し、膨大な実験を行い、その結果、
- NPAS4-NuA4は、神経興奮によりDNA切断がおこっているまさにその場所に結合している。
- NPAS4-NuA4は、DNA修復に関わるMRE11や RAD50をDNA修復場所にリクルートする作用を持っている。
- その結果、神経興奮後10時間ぐらいでDNA修復が完成するが、NPAS4-NuA4が存在しないと、修復が遅れる。
- このようにNPAS4-NuA4結合部位では切断と修復が繰り返されることになるが、実際老化と共に、この部位に修復ミスによる変異が蓄積する。
- NPAS4-NuA4を欠損させると、マウスの寿命は短くなり、20ヶ月でほとんどが死亡する。
結果は以上で、繰り返すが膨大な研究だ。しかし2015年の研究と併せて考えると、確かに神経興奮に合わせた修復機構という手の込んだ仕組みができているのには感心するが、ここまで危ない橋を渡る必要がある神経細胞の複雑さにつくづく感心する。
2023年2月17日
ミラーニューロンは、イタリアの神経科学者リッツオラッティにより発見された現象で、手の運動をコントロールする脳神経の興奮を調べている時、実験者が行った手の動きに同じニューロンが反応したことから、他人の行動を自分の行動と同じと見做す能力と解釈されている。ただ、このような他人の行動を自分の行動と同じように脳内に表象する能力は猿のような高等哺乳動物にしかないと(少なくとも私は)考えてきた。
ところが今日紹介するスタンフォード大学からの論文は、マウスでも同じようなミラーニューロンが存在することを明らかにした研究で2月15日 Cell にオンライン掲載された。タイトルは「Hypothalamic neurons that mirror aggression(攻撃を写す視床下部神経)」だ。
縄張りを侵されると攻撃する行動は多くの動物に見られるが、マウスでは視床下部にこの攻撃行動をコントロールする神経細胞集団が特定されている。すなわち、これらの神経細胞は、感覚神経と共に、社会性、経験、自己認識に関わるさまざまな領域からインプットを受けて、最終的な攻撃行動を調節する。
著者らはこれほど複雑な行動は、必ず全体のプランを表象して指令されているはずで、それなら他のマウスの攻撃行動を見た時も同じ細胞がミラーニューロンのように反応するはずだと考えた。
そこで、視床下部の攻撃中枢の神経細胞の活動を、実際の攻撃行動で記録した後、今度は他の個体の攻撃を見せて、同じ神経細胞が興奮するかどうかを、single cell レベルで比べている。結果は期待通りで、攻撃行動で興奮した神経の6〜8割が他の個体の攻撃行動を見たときにも同じように興奮していることを発見する。まさに、状況を選べばマウスでもミラーニューロンを特定できるという訳だ。
この結論をさらに確認するため、今度は攻撃行動を起こしたときに興奮した神経では Fos が発現することを利用して、興奮した神経を蛍光分子で標識し、攻撃行動で標識された神経細胞が、他の個体の攻撃行動を見たときに興奮することを確認している。
最後に、ミラーニューロンが実際に攻撃行動に関わっているか調べるため、他の個体の攻撃行動を見たときに興奮した細胞特異的に、神経機能を抑制する操作を行い、実際の攻撃行動の様子を調べると、攻撃行動が強く抑制される。すなわち、直接行動に係るニューロンが、行動を目撃したときに働いていることを機能的に証明した。
一方、攻撃行動を見たときに興奮した細胞を特異的に活性化させると、今度は攻撃性が高まり、通常なら刺激に必要なフェロモン感覚も必要なく攻撃することを発見している。さらに、同じようにミラーニューロンを興奮させたマウスは鏡で自分の姿を見ても、攻撃体制に入ることが明らかになった。
結果は以上で、ミラーニューロン現象はマウスにも存在することが明らかになったことは、一つの行動プログラムが脳内で表象され、実際の行動だけでなく、同じ行動を目撃しても、その表象が脳内で再現されるという複雑な過程が決して人間や猿のような高等動物の専売特許でないことを明らかにした。これにより、ミラーニューロンの役割や、進化についての研究に新しい道筋が生まれたのではと期待している。
2023年2月16日
グリオブラストーマは最も悪性の腫瘍の一つで、治療が難しい。ただ、CAR-Tも併せて免疫治療が可能か現在真剣な検討が進んでいる。ただ、膵臓がんと同じで、グリオブラストーマは周りの組織をオーガナイズして、免疫を抑制する厄介な能力まで備えており、医学の前に立ちはだかっている。
今日紹介するペンシルバニア大学からの論文は、グリオブラストーマの腫瘍環境で免疫抑制の主役を演じているマクロファージを抑える薬剤を探索し、東洋医学で虫下や殺虫剤として利用されているセンダンから抽出されたToosedaninにその効果があることを発見した研究で、2月15日号 Science Translational Medicine に掲載された。タイトルは「Small-molecule toosendanin reverses macrophage-mediated immunosuppression to overcome glioblastoma resistance to immunotherapy(小分子化合物 toosedanin はマクロファージによる免疫抑制を反転させグリオブラストーマの免疫治療抵抗性を克服する)」だ。
研究は比較的単純で、ヒトマクロファージが免疫抑制を行うときに分泌する IL10 のプロモーター活性を蛍光で検出できるようにし、マクロファージがグリオブラストーマの培養上清により刺激された時誘導される IL10 分泌を抑える化合物を探索、802種類の化合物の中から toosedanin(TSN) を選んでいる。
マクロファージの培養で TSN が様々な免疫抑制分子の誘導を抑え、共培養している T細胞の増殖を誘導できることを確認した後、マウスグリオブラストーマ細胞株脳内移植モデルで、TSN が腫瘍の増殖を強く抑制し、マウスの生存期間が伸びること、またこの効果が主要組織での抑制性マクロファージの低下と、キラーT細胞の増加によることを確認している。
次に、TSN の作用機序を調べる目的で、抑制能を発揮しているマクロファージが発現する TSN 結合分子を調べると、Hck と Lyn の二つのチロシンキナーゼが TSN に結合し、また TSN がそれぞれのキナーゼ活性を抑制することを明らかにしている。ここからの最終経路は確定していないが、抑制性マクロファージの誘導にこれらのキナーゼが関わっていること、これを抑える TSN などの化合物はグリオブラストーマの免疫活性化に利用できることがわかった。
最後に、TSN と免疫チェックポイントの組み合わせ、あるいは現在ヒトグリオブラストーマに使われている同じ抗原に対する CAR-T治療を組み合わせて、臨床応用への可能性を探っている。
チェックポイント治療と併用すると、TSN 単独よりさらに生存期間を伸ばすことが可能で、なんと2割で完全寛解を達成している。また、CAR-T との併用でも、TSN 単独、あるいは CAR-T 単独よりさらに高い効果が得られている。ただ、この実験系では抗原を発現している細胞が半分程度なので、完治ができた個体はない。
結果は以上で、比較的単純なスクリーニングから、生薬由来の化合物が出てくることもあるのかとなんとなく感心してしまった。どのぐらい長期に利用できる化合物なのか、あるいは副作用などまだまだ先は長そうだが、グリオブラストーマが相手ならワラをも縋りたい。
2023年2月15日
哺乳動物同士を比べると、発生に要する時間は大きく異なっている。脳発達を考えると、大きくなればなるほど細胞も必要だし、構造化にも時間がかかるのは当然だが、iPS 細胞や ES 細胞からの分化の速度を見ても、極めて大きな差があることから、この時間差の多くの要因は、神経細胞の分化速度自体にあると考えられる。その結果、オルガノイドを用いた試験管内での脳研究は、培養だけで何ヶ月も時間がかかることになる。
今日紹介するベルギーのルーベンカトリック大学からの論文は、神経分化、特に成熟過程でのミトコンドリア活性が分化速度の違いの要因の一つであることを明らかにした研究で、2月10日号 Science に掲載された。タイトルは「Mitochondria metabolism sets the species-specific tempo of neuronal development(ミトコンドリア代謝が神経発生の種特異的テンポを決めている)」だ。
試験管内で ES 細胞から神経分化を誘導すると、前駆細胞の増殖が続く中で、順々に神経細胞の成熟が進む。すなわち、分化のスタートが同期していない。これは、例えば中胚葉系の分化を研究する時と大きく異なっており、細胞レベルの発生時間を特定することが難しい。
この問題を解決するため、培養のある時点で神経成熟を開始している NeuroD1 陽性細胞をタモキシフェン誘導による遺伝子スイッチにより標識する方法を開発し、分化を始めた細胞だけに焦点を当てて成熟にかかる時間を測定している。この手間をかけたことが、この研究のハイライトになる。
この方法で、NeuroD1 を発現して以降、成熟に必要な時間を調べると、マウスとヒトでは大きく異なるが、同時にミトコンドリアのサイズや活性を調べると、分化速度の違いに比例し、マウスではミトコンドリア活性が1ヶ月以内にピークに達するのに、ヒトでは2ヶ月経っても活性がようやく50%に到達できる程度であることがわかった。特に、ミトコンドリアの酸化リン酸化活性および、その結果 TCAサイクルの活性の成熟にヒトでは時間がかかることを確認している。
では、ミトコンドリアの成熟が早まれば、それにつれて神経分化の速度が早まるのか?この点を調べるため、ミトコンドリアの TCA サイクルから酸化リン酸化システムを高めることで、分化速度を速められるか検討している。方法だが、TCA サイクルへの原料となるアセチル CoA を増やすため、一つはピルビン酸から乳酸への経路をブロックする阻害剤、もう一つは脂肪酸からアセチル CoA の生産を高める薬剤を用いて分化を調べると、1ヶ月で見た時完全ではないが、かなりマウスの分化速度に追いつけることを、分化マーカー、細胞学的形態、そして神経興奮機能の観点から確認している。さらに、この分化速度を高める操作が、マウスに移植したヒトiPS細胞でも有効であることを示している。
以上が結果で、100%ミトコンドリアが決めている訳ではなく、エピジェネティックなど他の要因の関与は明らかだが、ミトコンドリア活性操作で分化速度を倍に早めることができれば、随分培養は楽になるだろうと思う。
2023年2月14日
3ヶ国語を話せるという日本人の友人は多くいるが、さすがにそれ以上となると現在台湾科学アカデミー研究所の太田欽也さんぐらいしか思い浮かばない。しかし世界には10を超える言語を操れる人が少数だがいるようで、今日紹介するMITからの論文は、最低5ヶ国語(平均で11ヶ国語)を使える人を集めてその言語やの活動を調べた研究で、まだ査読が終わって雑誌掲載された訳ではないが、掲載前のプレプリントを公開するbioRxivで公開されている。タイトルは「Functional characterization of the language network of polyglots and hyperpolyglots with precision fMRI(多言語および超多言語を使う人の言語ネットワークを厳密なfMRIで機能的に評価する)」だ。
基本的には査読前の論文は紹介しないので、発表されてから少し待っていたが、まだ雑誌が決まらないようなので痺れを切らして紹介することにした。
研究自体は、被験者の言語野を正確に特定したあと、言語を聞いている時の言語やの活動を調べただけだが、最低5ヶ国語、平均で11ヶ国語、最も多い人で54ヶ国語を使えるという、私から見れば言語の天才を26人もボストンおよびその近郊から集めて調べたことが驚きだ。実際、タイトルを見ただけで「どんな頭をしているのか?」と興味が湧く。
実験では、MRIを測定しながら、様々な言葉で朗読された聖書物語や不思議の国のアリスのパッセージを聞かせる。測定は、あらかじめ言語に反応する領域を各個人で特定し、その場所に絞って反応を見ている。
それぞれの被験者は、母国語、流暢に使える言語、ある程度わかるが流暢ではない、そして全くわからない言語、について自己申告させる。また、流暢な外国語に関しては、上手な順番を決めてもらっている。
これらの人たちが、様々な言語を聴いた時の、前頭葉から側頭葉にかけての言語野の活動とその強さを調べた結果、以下のことが明らかになった。
- まず、多言語を話す人では、母国語に対する言語野の反応が、通常の人と比べるとかなり低い。すなわち、あまり頭を使わなくても、母国語を理解できるように変化している。
- 母国語と、その他の外国語を聴いた時の反応場所、すなわちネットワークを調べると、ほぼ全ての言語で同じような領域が活動する。すなわち、言語が異なっても、対応する脳ネットワークの根幹はほぼ同じ。
- すべての言語は理解される限り同じ領域が反応するが、反応の強さを調べると、最も流暢な言語から流暢さが減じるにつれて順々に脳の反応が弱まっていく。
- 面白いのは、最も流暢な言語に対する反応は母国語に対する反応より強い点で、大体母国語は3番目から4番目に流暢に使える言語に対する反応の強さと同じになる。いずれにせよ、流暢さに比例して反応が高まるというルールに母国語は当てはまらない。熟練すると無意識になっていく手続記憶のようなものかもしれない。
結果は以上で、結果の解釈についてはこれからの問題だと思う。例えば自分の経験から言えば、母国語も含め流暢なほど頭を使っているのかと思っていた。すなわち、日本語は聞き流せるが、英語、そしてドイツ語と、理解しようとすればするほど頭を研ぎ澄まさないと聞き取れない。この流暢なほど反応が高いというのが、他言語を使える人だけなのか、2−3ヶ国語でもそうなのかはぜひ知りたいところだ。
脳データが示された被験者の中には、日本語が3番目に流暢という人もいたが、失語の研究から日本語と英語はネットワークが分離できるという話を聞いたこともある。この研究で調べているのは、言語ネットワークの核構造なので、さらに複雑な結合になると別の研究が必要だが、ぜひ多言語を使える人が失語になった時の臨床像も知りたい。
いずれにせよ、多言語を使う稀な人を調べることで、新しい言語の構造が見えてくることがよくわかる面白い論文だ。