Ras変異は半分以上のガンで見られ、ガン治療標的の一丁目一番地といえる。ただ、変異Ras に対する薬剤開発は一時ほとんど不可能ではないかとすら考えられるほど、多くのチャレンジをはねつけてきた(https://aasj.jp/news/watch/3288)。しかし、G12C 型変異に対する薬剤開発の成功に続いて、昨年に入って新しい発想の Ras 阻害剤が開発され(https://aasj.jp/news/watch/23613)個人的にも Ras がついに治療標的になりつつあると期待している。
今日紹介するノースカロライナ大学からの論文はその意味では極めてタイムリーな論文だが、これほど研究されてきた変異 Ras の作用がほとんどわかっていなかったことを実感させる研究で、6月7日 Science に掲載された。タイトルは「Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers(変異 KRAS ガンの KRAS と ERK 依存性トランスクリプトームを定義する)」だ。
これまでも変異 KRAS が発現したとき細胞内に起こる変化についての研究は数え切れないぐらい存在する。思い起こすと、KRAS 経路の研究はショウジョウバエで進み、RAS-RAF-MEK-ERK というシンプルなキナーゼのカスケードの集約した様に思う。ただ、実際のガンでの経路になると、話はもっともっと複雑になっていた。
この研究では人間のガンを用いた KRAS のこれまでの研究が複雑になってしまった要因は、細胞が置かれた状況が複雑すぎた結果で、試験管内でできるだけ単純化して KRAS 阻害のしかも急性効果を調べることから始めるべきと考えて実験を計画している。
主に KRAS 変異を持つ膵臓ガンに、KRAS ノックダウンを行い24時間後の転写因子の変化を調べている。ノックダウンでも、あるいは阻害剤を用いても、例外なく細胞周期が抑制される。実際の臨床では、KRAS 阻害剤が効かない例が多く存在するが、少なくとも試験管内で維持された細胞株では変異 KRAS が必須だ。
そして、KRAS を阻害したとき変化する遺伝子発現は、ほとんどの細胞株でほぼ同じであることがわかった。しかも膨大な変化を誘導するシグナル経路もショウジョウバエの研究以来知られているRAF―MEK―ERK に集約され、これまで指摘されていた PI3K 経路などは、膵臓ガンでは特定することはできない。
そして、この転写の変化をもたらす下流の分子も E2F、MYC、SRF、FRA1 の限られた転写因子の活性化によることがわかる。これらの一部は RAS-ERK 経路で直接リン酸化され活性化されるが、サイクリン/CDK のリン酸化により維持される E2F のように、KRAS カスケードシグナルによる間接効果と考えられる分子が多い。例としては、細胞骨格リン酸化による SRF 転写因子の活性化だが、完全に ERK からの経路が特定できているわけではない。
このように、KRAS-ERK のリン酸化カスケードが重要であることは間違いなく、早い時期の細胞周期だけではなく、細胞周期後期を調節する APC/C 複合体のメンバーは直接 ERK によるリン酸化を通して調節されている。また、エピジェネティック調節因子もこの経路によるリン酸化で調節される。
このように、サイクリン/CDK 、エピジェネティックス、細胞骨格など細胞周期にとって必須の分子がこの経路により調節されており、その結果 RAS 阻害による細胞増殖の抑制が起こる。
この研究のハイライトは、ERK などの阻害実験を KRAS 阻害実験と比べることで、KRAS の効果はほぼ100%古典的経路を使って伝達されていることを明らかにした点で、KRAS 阻害の抵抗性出現も、この結果をまずベースにして考えていく必要がある。
極めて複雑で膨大な結果を単純化して紹介したが、この単純性から出発し直して KRAS シグナルを再検討し、これからの RAS 阻害剤を使った治療を丹念に観察することの重要性を示している。例えば薬剤が効かないのは本当に RAS-MEK 経路の急性抑制が消失したのか確かめた上で、抵抗性を考える必要がある。
いずれにせよ、KRAS 阻害が古典的経路に集約することを改めて確認した研究で、RAS 阻害薬時代の論理的治療計画にとっても重要な研究だと思う。