11月27日 アミラーゼ遺伝子の正確な構造解析に基づく進化過程解読(11月22日 Science 掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

11月27日 アミラーゼ遺伝子の正確な構造解析に基づく進化過程解読(11月22日 Science 掲載論文)

2024年11月27日
SNSシェア

アミラーゼはデンプンを分解する酵素で、膵臓や唾液腺から分泌される。AMY2A、AMY3Bha は膵臓で主に発現し、AMY1 は唾液腺で発現するが、全て 100Kb から 400kb とサイズが人によって異なる AMY 領域に存在している。このサイズの違いからわかるように、それぞれの遺伝子は歴史的に重複を繰り返した結果、最も複雑な構造が形成された。このため、通常のゲノム解析では人間の多様性を完全に把握することが難しい。

今年の9月、この問題を Long read のシークエンサーを使って調べ、アミラーゼ遺伝子コピー数は農耕によりデンプン消費が上昇するとともに増えることを示した論文を紹介した(https://aasj.jp/news/watch/25169)。

今日紹介するジャクソン研究所からの論文は、実際に AMY 遺伝子領域はさらに複雑で、重複はここの遺伝子レベルで起こるのではなく、特定の領域の組み替えで重複、欠失が起こること、そしてサルから現存の人間までの進化を明らかにした研究で、11月22日 Science に掲載された。タイトルは「Reconstruction of the human amylase locus reveals ancient duplications seeding modern-day variation(ヒトアミラーゼ遺伝子領域を再構成することで古代に起こった重複が現在の人間に広がった歴史がわかる)」だ。

9月にカリフォルニア大学バークレイ校から発表された論文と比べながら今回の論文を見てみると、30近いハプロタイプの特定についてはほぼ一致している。ただ、重複があると各遺伝子の突然変異の解析が難しくなるという問題を解決して、3種類の AMY 遺伝子がどう分かれてさらに重複してきたかについて詳しく解析できている点で、この研究は深さがある。

この解析の上にそれぞれのハプロタイプの分布として遺伝子進化を見せている点も重複遺伝子数だけで示した以前の論文よりわかりやすい。

そして何よりも、重複のメカニズムとして個別の遺伝子が重複するのではなく、領域間での組み替えにより片方の染色体は欠失もう片方は重複するという変異タイプと小さな相同部位をベースにした相同組み換えの2種類が組み合わさって、現在の多様性が形成されることを見事に示している。

これらの解析をベースに、最後に人間進化とアミラーゼ遺伝子を重ねて見えてきたシナリオは、やはり前の論文とは異なっている。まず農耕以前、ネアンデルタール人とホモサピエンスが別れる前にアミラーゼ遺伝子の重複は起こっている。おそらく、火を使う調理や甘い植物を食べる習慣が生まれたことによると考えられる。

その後ホモサピエンスで現在の AMY 領域の構造が完成すると、農耕の始まりとともに遺伝子重複が進む。すなわち、現在のトルコで始まったアナトリア人で最も多くのコピー数が見られ、これがヨーロッパに談判していくことでヨーロッパでのコピー数や多様性が増加する。面白いのは、狩猟採取民と分類される古代人でも重複数などの多様性が大きいことで、すでにデンプン消費の影響がはっきり見られる。

以上が結果で、今回の論文はカリフォルニア大学の論文とはかなり異なるシナリオを示しており、この領域の解析の難しさを物語っている。いずれにせよ、世界中でこれだけ多様性があるとすると、それぞれの文化とアミラーゼ遺伝子を重ね合わせることの重要性がよくわかる論文だ。

カテゴリ:論文ウォッチ

11月26日 腸を知らずに腸内細菌叢がわかるわけがない(11月20日 Nature オンライン掲載論文)

2024年11月26日
SNSシェア

腸内細菌叢の研究というと便の細菌叢の現象学に限られていることが多いが、例えば草食動物と肉食動物では腸の長さや構造が違っており、これが細菌叢との相互作用に重要であることを考えると、腸を知らずして細菌叢について議論などできるはずがない。しかし、このようにホストと細菌叢を総合的にアプローチする研究グループはそう多くない。

今日紹介するBroad InstituteのXavier研究室からの論文は、まず腸の構成をしっかり見直した上で細菌叢の影響がどのようにホストに及ぶのかを調べるためのプラットフォームを構築した素晴らしい研究で、11月20日 Nature にオンライン掲載された。タイトルは「Spatially restricted immune and microbiotadriven adaptation of the gut(局所的に制限された免疫システムと細菌叢により誘導される腸の適応)」だ。

このグループの研究は何度も紹介してきたが、常にホストと細菌叢を統合的に考えるという点ではダントツのグループだと評価している。ただ、これまではホストと言いつつ一部の細胞にとどまっていた。この研究では、まず十二指腸から直腸まで、マウスの腸組織を高解像度で網羅的遺伝子発現解析を行い、腸の各領域を特徴付ける遺伝子を特定し、様々な外的要因による腸自体の変化を調べる基盤を作っている。

発生学、組織学で当然このような研究が進んでいてもいいはずだが、これほど包括的な解析はほとんど行われていなかったようで、実際示された遺伝子発現、また各領域の特異性だけでなく領域を超えて発現が見られる遺伝子などを詳しく調べることで、腸についての理解がまだまだ進展するような予感がする。

研究では、この領域を特徴付ける遺伝子発現が、概日周期や細菌叢によりどこまで変化するのか調べている。まず、我々の腸は概日周期に強く影響されるものの、ここで示された遺伝子発現パターンはほとんど影響を受けない。すなわち、腸各領域のアイデンティティーにつながる。

次に無菌マウスと SPF での遺伝子発現パターンを比べることで、細菌叢のホストの影響を調べている。驚くことに、ほとんどのアイデンティティー遺伝子発現は細菌叢が加わっても安定性を示している。これは当然で、だからこそあれほど多くの細菌をお腹の中に抱えても問題が起こらない。

それでもよく調べると細菌叢によって変化する遺伝子発現は確かにある。そして変化が見られるのはほぼ中腸部位に限られている。しかも変化する遺伝子は一部の転写因子の発現の変化によりコントロールされている。そして、腸の上皮細胞、線維芽細胞、ゴブレット細胞などを巻き込んだ変化が中腸部で起こっている。

このとき、ホストの細胞と細菌叢を媒介する細胞を免疫系の中に探すと、自然免疫リンパ球 ILC2 が、数は変化しないまま細菌叢により遺伝子発現が変化して IL-25 や IL-33 などを介してゴブレット細胞を中心に腸の細胞を細菌叢に適応させていることが明らかになった。

他にも炎症に対する抵抗性も含め極めて詳細な検討が行われているが、全て詳細は割愛した。要するに、腸の各部のアイデンティティーは安定に守られているが、中腸部では細菌叢に直接反応して適応する細胞のネットワークが存在することがわかる。まとめてしまうと結果は簡単に見えるが、これからまだまだ話が続く予感がする優れた研究だ。まず中腸部の発達期の変化は面白そうだし、迷走神経の関与も知りたい。いずれにせよ、土台ができるということが研究の進展にいかに大事かがよくわかる研究で、勉強した気分になる。

カテゴリ:論文ウォッチ

11月25日 健康女性の乳腺上皮細胞に見られるAneuploid (染色体の数の変化)(11月20日 Nature オンライン掲載論文)

2024年11月25日
SNSシェア

女性の乳腺は周期的に女性ホルモンで刺激を受け続ける。思春期から乳腺が増大すると、ヒトによっては Kg レベルに達する乳房が形成され、さらに出産を経験するとミルクを作るため大量の転写が起こることを考えると腫瘍に匹敵する増殖力を発揮していることになる。

その結果、正常の乳腺細胞でも様々な遺伝子変異が起こっていることは、京大の小川誠司さんのグループにより昨年8月 Nature に報告されており(https://www.nature.com/articles/s41586-023-06333-9)、また乳ガンの遺伝子増幅のスイッチが正常乳腺の段階から入ることを示したハーバード大学の研究をこのブログでも紹介した(https://aasj.jp/news/watch/22131)。

今日紹介するテキサス MD アンダーソン ガン研究所からの論文は、発達しすぎた乳房を小さくする手術で得られた正常乳腺細胞に絞って単一細胞レベルで aneuploid と呼ばれる染色体の数の変化(増えたり減ったりすること)を調べ、正常細胞のかなりの割合で Aneuploid 細胞が観察されることを調べた研究で、11月20日 Nature にオンライン掲載された。タイトルは「Normal breast tissues harbour rare populations of aneuploid epithelial cells(正常の乳房組織には低い頻度だが aneuploid 上皮細胞が存在している)」だ。

乳房縮小手術を希望されたということで、発達のいい女性に限られる話の可能性もあるが、小川さんの正常乳腺の仕事から考えても、一般化できる話だと考えている。研究では乳腺上皮を精製したあと、single cell レベルでゲノム解析を行い、染色体の大きな領域の欠失や重複が発生していないかを調べている。また平行して、染色体の構造を調べる Atac-seq 解析も行い、3種類存在するどの上皮細胞で変異が見られるのか、さらには組織上でどこにその変異が存在するのかを調べる in situ hybridizatio も組み合わせて調べている。

まず49人から採取した83260個の上皮細胞のゲノムを調べ、なんと平均3.19%の細胞が何らかの aneuploidy を示すことを確認している。ただ詳しく見ていくと、chr1q 重複、chrS欠損、chr16欠損、chr22欠損、chr3欠損、chr6q重複、chr16q欠失が順番に多い異常で、決してランダムに起こっているわけではない。

そしてこれら異常の結果が細胞の増殖に影響があるかを平ベルト、chr1 重複、chr10q、chr16、chr22欠損は細胞増殖力が城主しているが、他の aneuploidy はほとんど増殖に影響がないことがわかる。すなわち、増殖力が高まった aneuploid cell が選択され、割合が増加することがわかる。一方、X染色体欠損は2番目に多い aneuploidy だが、ほとんど増殖性に変化が認められない。従って、変異の頻度は最も高いといえる。これは当然のことで、元々X染色体は片方が不活性化されているため欠失しやすい。また、検出される aneuploidyは10q というように染色体の一部の aneuploidy でXだけ全体の aneuploidy が見られる。

以上をまとめると、正常乳腺細胞ではかなりの割合で aneuploidy が起こっており、その中の一部では増殖優位性獲得が起こった結果、細胞が増殖し、anueploidy の比率を上げていることになる。とすると、この aneuploidy とガンとの関わりが考えられるが、実際 chr1 重複では MCL1 や MDM4 などの発ガンに関わる遺伝子が増加し、また chr16、chr22欠損ではカドヘリンや NF2 などの重要遺伝子が欠損し、実際エストロジェン反応性の乳ガンでも広く認められる。また、複数の変異が合わさって最終的にガンが発生しているケースも認められる。

面白いのはそれぞれの aneuploidy が起こっている乳腺上皮の種類が異なることで、Atac-seq と組み合わせて変異と細胞の種類を対応させると、chr1q 重複は3種類の上皮で起こっているのが観察できるが、例えば chr10q 欠損は PTEN 遺伝子欠損につながり、管腔型の上皮だけに見られる。一方、chr3p は基底細胞型の上皮に見られる。この違いはガンへと発展しても共通で、このことから基底細胞型と管腔型の乳ガンは別の細胞から発生する確率が高いと言える。また、上皮型細胞での aneuploidy は、エストロジェン受容体陰性の乳ガンで頻度が上がっていることから、正常細胞での aneuploidy がガンのタイプに強い影響を持つ可能性を示唆している。

以上が結果で、ガンが発生するずっと前から、女性がその性ともいえるリスクを背負っているのを知ると、乳ガンを早期発見し、一人でも死亡者を減らすことが社会全体の課題であることがよくわかる。

カテゴリ:論文ウォッチ

11月24日 チンパンジーにも見られる文化の継承と展開(11月22日 Science 掲載論文)

2024年11月24日
SNSシェア

多くの動物で道具の使用が確認されており、例えばカラスのように枝を用いて穴の中の虫を引き出す行動のようにグループの中で世代を超えて共有されているように見える場合も存在するが、学習した文化をさらに新しく発展させるのは人間だけだとされてきた。

今日紹介するスイス・チューリッヒ大学と英国 St.Andrews 大学からの論文は、アフリカ西部から中部、別々のグループを形成して生息しているチンパンジーが発達させた様々な道具使用の伝承と発展をゲノムから推察されるグループ間の系統関係とを対比させ、チンパンジーの歴史の中で文化が継承され発展することがあることを明らかにした研究で、11月22日 Science に掲載された。タイトルは「Population connectivity shapes the distribution and complexity of chimpanzee cumulative culture(集団同士の関係性がチンパンジーの文化の分布と複雑性を決めている)」だ。

この研究では個体から抜け落ちた毛を用いて828個体のゲノムを解読し、集団が分離してからの血縁関係(先祖共有の程度)を調べることで、通常は調べることが難しいチンパンジーの歴史を文化の継承に重ねることができる点だ。

まずそれぞれの集団に見られる採取行動を、道具不使用、簡単な道具仕使用(枝で土を掘る)、複雑な道具使用(クルミを割ったり、枝を使って蜂蜜を取り出す)などに分類し、特定の行動が集団間で共有されているとき、その集団間のゲノム関係を調べ、特定の行動を始めた先祖の共有性を調べている。

結果は驚くべきもので、道具を使わない行動や、簡単な道具を使う行動を共有する集団では、先祖の共有性、すなわち血縁をほとんど認めることができない。ところが複雑な道具使用を共有している集団間には明確に血縁関係が認められる。個々で血縁関係というのは我々が想像する近い関係ではなく、15000年という単位で道具使用が始まってから集団に分かれて現在までその文化を維持しているというスケールの話だ。

さらに面白いのは、最初地下から蜂蜜を取り出すための道具使用がそれを継承した他の集団でシロアリを引っ張り出す道具へと発展した歴史を、5000年の間に起こった集団の分離と移動の歴史として再構成できることだ。

以上が結果で、単純な道具使用はそれぞれの集団で何度も新たに発生することから、その維持に血縁を通した継承は必要ないが、複雑な道具使用は極めてまれにしか起こらず、それを何千年もに渡って近縁間での学習を通して継承されていることがわかる。

そして、また一部の集団では、一つの道具使用から他の使用法が新たに発展することがあり、それも同じように継承されるという歴史をゲノムから描くことができる。すなわち、たまたま発見した技術を継承し発展させる能力がチンパンジーにも存在することが明らかになった。

これまで道具使用だけを見てチンパンジーの能力を研究されてきたが、これにゲノムから算定される歴史を重ねると、その進展が想像以上にゆっくりしているのに驚く。人間の狩猟採取民間の交流と比べると、チンパンジーの集団間の交流がほとんどないことも重要な要因と考えられるが、まだまだ研究が必要だろう。いずれにせよ、チンパンジーが新しい道具の使用法を発見し継承する間に、人間はチンパンジーの5000年の歴史をゲノムから再構成することができるようになっている。

カテゴリ:論文ウォッチ

11月23日 子供に起こった遺伝子変異が原因の神経発達障害に対するコモンバリアントの影響(11月20日 Nature オンライン掲載論文)

2024年11月23日
SNSシェア

今年の9月、医学部時代の同級の門眞一郞君のFaceBook で、学生時代京大精神科の助教授をされていた高木隆郎先生が亡くなられたことを知った。学生時代進路についていろいろ悩んでいた時期高木先生が主催されているユングの読書会に参加して、発達を考える精神医学に惹かれたこともある。ユーモアに富む率直な先生だったが、当時統合失調症などの精神疾患に遺伝性があると発言され、遺伝性を否定するグループから暴行を受けたという話を聞いたことがある。現代のゲノム研究から考えると今は昔の話だが、高木先生を思い出しながらゲノム研究半世紀の成果を実感した。

知能発達障害の場合、子孫を残す確率が低いことから例えば代謝病と比べて単純な遺伝形式で説明できない。最近では生殖細胞発生過程で発生した変異が病気発症に大きな働きをしていると考えられている。とすると、発達障害は遺伝性がないという結論になってしまうが明らかに存在する。おそらく、コモンバリアントの集まりが子供に伝わってレアバリアントと合わさって病気を作ると考えられるが、コモンバリアントの役割についてまだ研究が必要だ。

今日紹介する英国サンガー研究所からの論文は、親に異常がないのに子供が脳の発達障害になった1万人近い家族の GWAS を調べ、コモンバリアントが病気発症に関わるメカニズムを探った研究で、11月20日 Nature にオンライン掲載された。タイトルは「Examining the role of common variants in rare neurodevelopmental conditions(希な神経発達障害に関わるコモンバリアントの役割を調べる)」だ。

研究は徹底的にゲノム相関研究で、これまで蓄積された様々な性質に対するコモンバリアントを集合させたリスク係数が、病気を発症した家族と正常児家族で差があるかを調べている。

まず、polygenic score (PG) と呼ばれる係数と病気の発症を比べると、発症した家族では学業や認知機能と関わるコモンバリアントの PG は明確に低下している。リスクスコアが低いというのは直感に反するように思えるが、おそらくレアバリアントを持つ人は、コモンバリアントのリスクスコアが低くても、病気へのハードルを越えてしまうと考えられる。しかし、これだと子供に伝わるポジティブな遺伝性がないことになってしまう。

コモンバリアントは両親から伝わるので、両親から直接伝わったリスク要因を調べると、確かに学業や認知機能などの一般的な PG は低く、子供のデータと一致しているが、統合失調症や神経障害などに関わるリスクなどはかなり高いことがわかる。ここでは議論されていないが、おそらく遺伝性変異が起こりやすいリスクなど他にも遺伝性にかかわるコモンバリアントは存在するので、今後はこれらも含んだ検討が必要だと思う。

最後に、子供にはなくて親にだけ高い PG が存在するか調べている。これは、コモンバリアントリスクが高い親によって作られる環境が子供の発症を促す可能性を考えている。母数がさらに増えることで異なる結果になる可能性はあるが、例えば学業などに関わる PG はほとんど影響がない。すなわち、親のリスクバリアントが子供に間接的に関わる可能性はほとんどないことがわかった。

一方で、同じ性格や環境同士がペアになる確率が高いとされており、この結果が子供の発達異常に関わる可能性も指摘されている。これについては、一定の相関が認められるが、もちろん原因についてはさらに大規模研究が必要と思われる。

以上、高木先生が暴行を受けた時代と比べると、患者さんや家族の協力のもとこれほど詳しい発達障害のゲノム研究が進んでいることに感慨を覚える。

カテゴリ:論文ウォッチ

11月22日 網膜血管異常増殖を抑制する抗ROBO抗体(11月20日 Science Translational Medicine 掲載論文)

2024年11月22日
SNSシェア

基本的に私の教室に在籍したことのある研究者の論文は、どれほど素晴らしい論文でもこのブログでは取り上げないと決めているのだが、今日は例外として、極めて個人的な理由で論文を選んだ。

熊大から京大に移った頃、突然発生学の大御所 Nicol Le Douarin から、おまえの友達の娘を日本に送るからニワトリの Flk1 に対するモノクローナル抗体作成を教えてほしいとメールが来た。友達とはドイツ留学時代の同門の Klaus Eichmann で、やってきたのが Anne Eichmann だった。それから半年、彼女は見事にモノクローナル抗体を完成させ、それをきっかけに第一線の血管生物学者として今も活躍している。

今日取り上げるのは、現在はイェール大学で研究している Anne Eichmann 研究室からの論文で、ROBO1/2 に対する抗体が酸素誘導網膜症 (OIR) など異常血管増生を伴う病理に対し抑制効果があることを示した研究で、11月20日 Science Translational Medicine に掲載された。タイトルは「Monoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells( Robo1 と Robo2 シグナルに対するモノクローナル抗体は骨髄球により媒介される病的網膜血管新生を抑制する)」だ。

研究ではまず、ヒトROBI1、ROBO2 の細胞外ドメインを抗体の Fc と融合させ、これを抗原に使ってモノクローナル抗体を作成している。抗体の作り方は、ファージディスプレーと呼ばれる全く動物を使わない方法で作成しているが、抗原の調整法は私の研究室で習った方法をまだ使っていることを知ってうれしかった。結果、ヒト及びマウスの ROBO1/ROBO2 両方のシグナルをブロックできる抗体を作成して研究に使っている。

OIR に ROBO とそのリガンド SLIT が関わることはすでに知られている。この研究では、まず作成した抗体を OIR マウスに注射すると、血管新生を強く抑制すること、現在治療に用いられている抗 VEGFA 抗体と組み合わせると、さらに効果が高まることを示し、ROBO に対する抗体治療が、網膜異常血管形成症の治療法として期待できることを示している。

ただ作用のメカニズムに関しては ROBO シグナルの場合一筋縄ではいかない。というのも網膜ではROBO は様々な細胞で発現が見られ、最終的な効果がどの経路で起こるかを決めかねる点だ。この問題を single cell RNA sequencing と、そこで発現している遺伝子の量の比較から明らかにする試みを行っているが、多くの細胞でシグナルが誘導されていることがわかり、どの細胞と決めるのは難しい。

結局、ROBO1/2 を各細胞でノックアウトして OIR による異常血管新生を調べ、マクロファージ特異的にROBO がノックアウトされると血管新生が抑えられ、さらに ROBO 下流の PI3Kγ がマクロファージでノックアウトされた場合も血管新生を止められることから、マクロファージが SLIT で刺激を受けると、M2 型マクロファージに変化し、血管新生をサポートする VEGFA、IL-10、IL-12 などのサイトカインを発現する過程が抗体の標的であると結論している。

最後に、OIR だけではなく、加齢に伴う黄斑変性症モデルでもこの抗体が有効であることを示し、現在特効薬として用いられる BEGFA に対する抗体に加えて、ROBO に対する抗体を併用できることを示している。

結果は以上で、抗体とマクロファージ特異的ノックアウトの合わせ技一本といったところだが、もし ROBO 抗体が加わることで、血管新生抑制効果の長期持続が可能になることが見えると、新しい治療として確立する可能性はある。

カテゴリ:論文ウォッチ

11月21日 ケトン体研究2題(11月12日 Cell オンライン掲載論文他)

2024年11月21日
SNSシェア

皇帝ペンギンは子供を守るために何ヶ月も絶食をし、さらにパートナーが運んできた餌も胃の中で留め置くことで自分の栄養にせずに子供に与えると言われている。すなわち、この間のエネルギーは体脂肪を β酸化して合成したアセチルCoA を使うが、同時にアセチルCoA から合成したケトン体をエネルギー源として使っている。どこかで読んだが、コウテイペンギンは子育てが始まると2ヶ月ぐらいまでは血中ケトン体が上昇を続けグルコースのようなエネルギー源として働く。ただケトン体の効果はエネルギー源にとどまらず炎症を抑えたり筋肉機能を上昇させたりすることが知られているが、特に脳神経に対する様々な作用は実際の臨床にも使われている。

ケトン体の脳神経への機能を調べた論文を2編読む機会があったので今日はそれを紹介することにした。最初のスタンフォード大学からの論文は、ケトン体の一つ βhydrooxybutyrate (BHB) が、アミノ酸と結合したあと脳の摂食中枢に働くメディエーターになることを示した研究で、11月12日 Cell にオンライン掲載された。タイトルは「Ab-hydroxybutyrate shunt pathway generates anti-obesity ketone metabolites( β-hydrooxybutyrate シャント経路は抗肥満活性のあるケトン代謝物を生成する)」だ。

BHB やアセトンなどのケトン体は、それ自体の作用が研究されてきたが、この研究では BHB をフェニルアラニン (Phe) などのアミノ酸と結合させる酵素が存在し、ケトンが上昇するとこれが働いて BHB-Phe を腎臓腸で合成し、これが摂食中枢に働くことを示している。

このアミノ酸に BHB を添加する酵素を、腎臓と腸に主に発現している carnosine dipeptidase (CNDP2)であることを特定し、血中の BHB が上昇すると、BHB-Phe も上昇することをマウスで明らかにしている。

こうしてケトン体が上昇すると BHB-Phe が合成されることを明らかにした上で、BHB-Phe を直接投与する実験を行い、BHB-Phe が摂食を抑制し、体重増加を抑えること、逆に CNDP2 ノックアウトマウスではマウスが肥満になることを示し、新しい摂食抑制分子として利用できることを示している。

驚くことに、BHB-Phe を投与すると視床下部の一部の神経が c-Fos を発現する、すなわち刺激を受けること、また同じ CNDP2 で合成される Lactate-Phe も視床下部に直接働くが、作用する神経は別であることを示している。残念ながらこれ以上の解析がないため、BHB-Phe がシナプスに働くのか、あるいは細胞質内で反応を変化させているのかはわからないが、レプチン系も働いている接触中枢神経細胞に作用して食欲を抑えるという結果は、食欲調節を目指した創薬を活性化させる気がする。

もう一編はチリ・サンチアゴにある老化研究所からの論文で、老化マウスの脳に対するケトン体の効果を調べた研究で、ちょっと古いが Cell Reports Medicine の6月号に掲載された。タイトルは「Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice(生涯の後期でケトンダイエットを行うことで、老化マウス神経細胞の PKA シグナル経路を介するシナプス機能を変化させ記憶を開戦する)」だ。

この研究では従来のケトン体研究の延長で新しいメディエーターの発見ではない。ただ、20-23ヶ月例の比較的高齢のマウスを用いてケトンダイエットを接種させ、認知機能への影響を調べている。ケトンダイエットを一ヶ月おきに繰り返すと、コントロールと比べて体重は増え気味になる。しかし、血糖は低下するので代謝改善ははっきりしている。

そして何よりも、運動機能や認知機能が高まり、生理学的には海馬での長期増強が見られ、神経細胞レベルで樹状突起やシナプスが上昇している。 この原因をプロテオーム解析を用いて探ると、cAMP/PKA シグナル経路が高まった結果、シナプス小胞の移送や細胞骨格などが活性化され、これが樹状突起などの長期変化につながると考えられる。そしてこの変化が持続することで、BDNF など神経増殖因子の分泌促進につながることで、認知機能の低下が抑えられると結論している。

以上、最初の論文はケトン体から新しいメディエータが合成され摂食を抑え、あとの論文ではケトン体自体が脳神経を活性化して認知を防ぐという結果なので、高齢でもケトンレベルをある程度維持することの重要性がわかる。これまで高齢者についてケトン体の効果の研究はあまり行われてこなかったが、重要な課題だと思う。

カテゴリ:論文ウォッチ

11月20日 リボザイムを用いて大きな遺伝子も分割して細胞導入できる(11月15日 Science 掲載論文)

2024年11月20日
SNSシェア

遺伝子治療にはアデノ随伴ウイルス (AAV) などのベクターが必要なため、詰め込める遺伝子サイズに限界がある。例えば筋ジストロフィー治療に必要な Dystrophin 遺伝子などは大きすぎてベクターが使えない。今日紹介する米国・ロチェスター大学からの論文は、詰め込む遺伝子の方を分断して細胞に導入し、細胞の中で転写された RNA を再結合して大きな遺伝子の導入を可能にする方法の開発で、11月15日号 Science に掲載された。タイトルは「Ribozyme-activated mRNA trans-ligation enables large gene delivery to treat muscular dystrophies(リボザイムにより離れた mRNA の結合を活性化することで大きな遺伝子を導入して筋ジストロフィーを治療できる)」だ。

この研究が目指したのは、大きな遺伝子を半分に分けて別々に RNA に転写させたあと、一本の RNA がスプライシングされるように RNA を再結合させる方法の開発だ。ただ、スプライシングとは異なり別々に転写された RNA を結合する必要がある。

この研究では、一部の特殊な RNA のスプライシングに関わる RtcB 酵素の働きを利用して別々に転写された RNA を一本の RNA にまとめたあと、それぞれに組み込んだスプライス標識を使ってスプライシングさせ、完全なmRNAに仕上げることが可能かにチャレンジした。

そのために、まず別々に転写されたRNAを、スプライスドナー、スプライスアクセプターの二つの標識配列が露出した2本の RNA として並べる必要がある。この目的に、発現させたい遺伝子に転写が起こると自らを切断するリボザイム( RNA でできた酵素)を組み込み、RtcB で切断部位をまとめたあとスプライシングさせ、完全長な mRNA ができるようにしている。

RtcB が発現している細胞なら、全てこの方法で1つの遺伝子を半分に分け、細胞に導入してから細胞の中で一本の完全 mRNA になることを確認し、またこの過程でスプライシングを受けなかった異常タンパク質がほとんどできないこと(リボザイムで切断されると、融合できないと自然に分解される)を確認したあと、大きな遺伝子の代表、DysferlinとDystrophin を AAV ベクターを用いて筋肉に発現させる治療が可能か、マウスで検討している。

いずれの遺伝子の場合も、2つに分けた遺伝子をそれぞれ AAV ベクターに詰めて腹腔注射することで、遺伝子がノックアウトされ病気を発症したマウス筋肉がこのような大きな遺伝子を正確に発現し、機能が回復することを示している。

以上が結果で、大きな遺伝子に限る話だが、一つの遺伝子を2つに分けても、最初から完全な遺伝子を導入した場合と比べ8割程度の効率で遺伝子発現が誘導できているので期待が持てる。Dystrophin 遺伝子の場合は2つに分けても大きすぎるので、機能が確認されるより短いフォームの Dystrophin 遺伝子を用いて治療実験を行っている。しかしひょっとしたらスプライシングのように、数個の部分をつなぎ合わせることもリボザイムを用いると可能になり、導入できる遺伝子の大きさの制限はなくなるかもしれない。

また、この研究ではもう一つの利用法としてこれまで AAVベクターでは導入が難しかった次世代型遺伝子編集技術 Prime-Editor も AAV ベクターで利用でき、作用時間を制限した遺伝子編集が可能になることも示している。このように、ベクターの制限を超える必要のある場合は数多く存在する。

カテゴリ:論文ウォッチ

11月19日 頭の骨では歳をとっても若々しさを保ちうる(11月13日 Nature オンライン掲載論文)

2024年11月19日
SNSシェア

我々の骨髄は歳とともに脂肪で置き換わり、骨髄造血のキャパシティーは低下する。また、自然炎症が誘導され、この結果クローン性造血が起こることも知られている。ただ、これらは全て軟骨内骨化と呼ばれる方法で形成される腸管骨での話で、膜内骨化と呼ばれる方法で形成される頭蓋骨での造血についてはほとんど調べられていない。

今日紹介するドイツ・ミュンスターのマックスプランク分子生物医学研究所からの論文は、軟骨内骨化で形成される腸管骨と、膜内骨化で作られる頭蓋骨の造血は全くことなり、特に高齢者でも頭蓋骨の造血能は若々しいことを示した驚くべき研究で、11月13日 Nature にオンライン掲載された。タイトルは「Adult skull bone marrow is an expanding and resilient haematopoietic reservoir(成人の頭蓋骨骨髄は年齢とともに拡大し回復力の高い造血細胞の供給源だ)」。責任著者の Ralf Adams は血管生物学を通して交流があったが、この仕事は彼のセンスの良さを物語る。

研究ではまず頭蓋での血管の発生をつぶさに観察し、腸管骨の逆で、生まれたばかりではほとんど血管が発達していないのに歳とともに発達し、老化マウスでもしっかりと血管毛が構築され散ること、そして骨髄の特徴である静脈叢が形成されていることを明らかにする。しかも、老化後の頭蓋骨髄静脈叢はマウスでもヒトでも見られ、女性の方が発達している。

この理由の一端は妊娠期に急速に頭蓋骨髄静脈叢が発達するためかもしれない。実際、頭蓋の静脈叢の形成は、脳卒中など様々な刺激状態で誘導され、副甲状腺からでるパラトルモンの刺激でも誘導されるように、かなり機動的にできている。

この頭蓋骨骨髄では完全な造血が起こるのだが、面白いことに血管の発達は頭蓋由来の造血幹細胞を移植したときに最も強く誘導され、おそらく造血幹細胞が発現している血管増殖因子 VEGFA の作用によると考えられる。実際、腸管骨では年齢とともに VEGFA の量は低下するが、頭蓋骨では逆に上昇する。

また、老化マウスでは頭蓋骨で若々しいバランスのとれた造血が行われるため、血液細胞の供給源としては優れていることも示している。すなわち、頭蓋あるいは腸管骨の骨髄をシールドして放射線照射すると、頭蓋をシールドした方が造血回復力が高く、照射後のマウスの生存率を上昇させられる。また、頭蓋由来の造血細胞と腸管骨由来の造血細胞を追跡すると、頭蓋由来造血細胞の数が他の造血細胞を凌駕することがわかる。

しかも、頭蓋では炎症性のサイトカインの発現が低く、老化に伴う骨髄球への造血バランスの変化も見られない。

以上が結果で、これまでこの事実が全く知られなかったことが驚きで、様々な現象を観察して気づく力の重要性がよくわかる論文だと思う。また、我々高齢者にとっても、若さを維持している臓器があることはうれしい結果だ。

カテゴリ:論文ウォッチ

11月18日 人間の長い成長期はいつ進化してきたのか(11月13日 Nature オンライン掲載論文)

2024年11月18日
SNSシェア

他の動物と比べたとき、長い成長期と、長い生殖期後の生が人間の特徴で、生物論的だけでなく、文化論的にも研究が続いている。文化論的な研究で最も有名なのはフランスの歴史学者フリップ・アリエスの「子供の誕生」で、子供を小さな大人として見ていた中世から子供を子供として育てる近代への歴史を分析した。とはいっても、人類誕生以来人間の子供を授乳期を超えてケアする必要があり、種としての大きな負担を背負っても脳をはじめとする人間の特徴を獲得したことが人類の繁栄をもたらしたことを物語る。

今日紹介するスイスチューリッヒ大学とフランスグルノーブルのヨーロッパシンクロトロン施設からの論文は、グルジアで発掘された約180万年前の直立原人ドマニシ原人について、若くして死亡した個体の歯をシンクロトロンで分析して、サルや我々人間歯の成長と比較した研究で、11月13日 Nature にオンライン掲載された。タイトルは「Dental evidence for extended growth in early Homo from Dmanisi(ドマニシ原人も長い成長期を持っていたことが歯の分析からわかる)」だ。

ドマニシ原人はおそらくヨーロッパでは最も古いエレクトスにあたり、185-177万年前に生息していたと推察される。多くの完全な頭蓋が出土し、例えば歯が全くないのに生きていた老人や今日紹介する成長期の子供など、人類の社会構造を知る重要な遺跡と考えられている。

この研究で選ばれたのは歯が完全に残っている11歳の子供で、永久歯が生え替わったあと成長が終わる前に死亡しており、歯が成長して乳歯と置き換わり成長しながら使用される歴史を調べることができる。もちろん貴重な化石なので歯を傷つけることはできない。代わりに、大規模シンクロトロンからの放射光を用いた立体断層分析で全ての歯の内部を調べている。

方法の詳細は割愛するが、この検査により生後すぐに形成される歯冠を起点に成長期に起こる縞やストレスによる線など、実際には週単位での成長の様子が分析できる。その結果、ドマニシ原人の歯全体の成長軌跡は類人猿とは異なりほとんど我々と一致する。一方、これまで分析されたアウストラピテクスの歯の軌跡はチンパンジーやボノボに近い。

ただ、乳歯に生え替わるまでの成長は人間と比べると早く、我々より早く永久歯に置き換わり、大体12-13.5歳で歯の成長が止まったと考えられる。また我々と同じで、臼歯の成長が最も遅い。いずれにせよ、生後すぐに成長が鈍化し始める類人猿とは異なり5歳まで緩やかに成長が続き、その後成長が遅くなる人間型の軌跡が確認された。

以上が結果で、歯からも直立原人から様々な人類の特徴が獲得されたことの新しい証拠になる。おそらく食物を石器で処理するようになったことも重要な要因だったと考えられるが、ドマニシ原人はまだオルドワン型の石器を使っており、また人間の歯形が残っている動物の骨が見つかっていることから、人間の食が大きく変化する時期に当たると考えられる。特に歯が完全に抜け落ちている老人の生存が確認されていることから、今後歯の研究と生活に関する考古学を統合して調査が進むことで、エレクトスがどのように人間の特徴を獲得したのか、またそれが人類進化にどのようなインパクトを及ぼしたのか、などが明らかになるのではと期待される。

カテゴリ:論文ウォッチ
2024年12月
« 11月  
 1
2345678
9101112131415
16171819202122
23242526272829
3031