2024年10月2日
このブログでも何度も取り上げたが、細胞内の標的分子にタンパク質分解システムをリクルートして抑制する方法が、創薬の一つの方法として利用されるようになっている。そのほとんどは標的タンパク質にユビキチンリガーゼをリクルートする方法なので、細胞内のタンパク質に限られる。
これまで細胞表面に存在するタンパク質については、細胞膜からリソゾームへとリクルートし分解する方法が試みられている。ただ、表面タンパク質が細胞内小胞へ取り込まれてからの輸送経路が複雑で、完全に分解する経路へ導くことは簡単ではなかった。
今日紹介するハーバード大学からの論文は、細胞表面から常に細胞内小胞へインターナライズされ、その後また細胞表面へリクルートされるトランスフェリン受容体を用いて、細胞表面分子をリソゾームへとリクルート、分解する方法の開発研究で、9月25日 Nature にオンライン掲載された。タイトルは「Transferrin receptor targeting chimeras for membrane protein degradation(膜タンパク質分解のためのトランスフェリン受容体へリクルートするキメラ分子)」だ。
トランスフェリン受容体に着目したのは、常にインターナライズされ膜と小胞を行き来しているという性質と、正常細胞と比べるとガン細胞で何十倍も発現が高いという性質だ。これにより、標的分子が正常細胞に発現していても、ガン細胞だけリサイクル経路で処理する可能性が出る。
そこでまず T細胞白血病細胞に発現させたキメラ抗原受容体 (CAR) をモデルとして、様々なタイプの CAR に結合するタンパク質とトランスフェリンに結合するタンパク質(抗体やリガンド)を結合させた分子を結合させ、CAR-T に加えると、細胞表面分子をトランスフェリン受容体へとリクルートし、細胞内小胞へインターナライズすることができるが、トランスフェリンと同じように一部がリサイクルされてしまって、分解されないことがわかった。
そこでトランスフェリンに結合するリガンドと、標的分子に結合する分子の間に、小胞体で働く酵素によって切断できるようにし、トランスフェリン受容体とは異なる、リソゾーム経路へ標的分子をリクルートする方法を開発し、最終的に80%近くの標的分子を完全に分解できる方法に発展させている。
次に、CAR のような人工的標的ではなく、PD-L1、EGF 受容体、CD20 など、抗体治療の標的として使われている分子を標的に同じ方法が使えるか調べ、全ての分子をリソゾームへとリクルートし分解できることを示している。
最後に、EGF 受容体に依存性の非小細胞性肺ガンをモデルに、EGF 受容体を分解できるか検討している。非小細胞性肺ガンに対しては EGF 受容体を標的にする抗体治療が行われているが、様々な変異により抗体の効果が失われる。しかし、ともかく EGF 受容体が発現しておれば分解経路へとリクルートできるこの方法は、抗体治療の効果がなくなったガンに対しても効果がある。また、EGF 受容体を発現する正常線維芽細胞にはほとんど影響がない。
最後に、EGF 受容体に対する抗体治療が効かなくなった腫瘍を移植したマウスに、この方法を試すと、EGF 受容体を分解して、ガンの増殖を抑えることを示している。
結果は以上で、臨床応用までは時間がかかるとしても、細胞表面分子をリソゾームへと導く方法開発の意義を明確に示した研究だと思う。特に驚いたのは、EGF 受容体に対する抗体と、トランスフェリン受容体に対する抗体を結合させた、彼らが TAC と名付けたキメラ分子の血中の半減期が、抗体より長く16日もあることで、治療する側から見ても使いやすい方法に成長するのではないだろうか。
2024年10月1日
これほどメタゲノミックスが進んだ現在でも、新しい細菌が発見され続けている。今日紹介する米国、クリーブランドクリニックからの論文は、マウス腸内細菌叢を IgA 分解活性を指標にスクリーニングし、Tomasiella immunophila と名付けた新しい細菌を発見した研究で、9月27日 Science に掲載された。タイトルは「A host-adapted auxotrophic gut symbiont induces mucosal immunodeficiency(ホストに適応した栄養要求性腸内共生細菌は粘膜免疫不全を誘導する)」だ。
細菌は様々なタンパク質分解酵素を持つので、腸内免疫に働く IgA を分解する活性を持ってることは十分考えられる。そこで、腸内の IgA が高いマウスと、低いマウスの細菌叢を分離して、IgA に作用させると、低いマウスのみ IgA を分解することを発見する。
次に、細菌培養を繰り返して IgA 解能を持っている細菌を絞り込んでいくと、テトラサイクリン抵抗性の Muribaculaceae 科に属する新しい細菌が特定され Tomasiella immunophila と名付けている。
この細菌の培養には細胞壁成分で、通常のバクテリアは自分で産生するN-アセチルムラニル酸が必要で、これを回りの細菌から調達して生きていると考えられる。さらに、無菌マウスに移植しても腸内で増殖できず、他の細菌叢との協力の下初めて腸内に居着くことができている。面白いことに、免疫不全マウスでは他の細菌叢が助けてくれても腸内での生存が低下していることから、IgA を何らかの形で細菌叢での生存に役立てている可能性がある。
この細菌、あるいは細菌由来の小胞に存在する酵素は、免疫グロブリンの κ鎖を分解し、こうしてH鎖とL鎖が分離すると、他の酵素がさらに働いて免疫グロブリン、腸内ではIgAが完全に分解される。
この活性はマウス腸間内でも発揮され、この細菌と IgA 分解能のない細菌叢を同時に加えたマウスの腸内では、IgA の量が低下する。そして、感染実験や、硫酸デキストランによる上皮障害実験を行うと、この細菌を加えたときだけ抵抗力が低下することを明らかにしている。
残念ながら、この細菌が持っている IgA 分解酵素の特定には至っておらず、またヒト IgA もこの細菌では分解できないこともわかった。
以上の結果から、Tomasiella immunophila はマウスとともに共進化してきたユニークな細菌で、示されてはいないが、おそらく IgA を一定程度分解することで、他の細菌との協力関係を築いて生存してきた様に思える。ただ、様々な病的状態では、この機能が逆にホストの抵抗力低下を促すことも示されていることから、共生菌としての生態についてはまだまだ研究が必要だと思う。また、同じような菌が人間にも存在するかの特定も残っている。このように、多くの問題が未解決のまま残されたフラストレーションを感じる論文だが、新しい不思議な細菌の発見という点では面白い。
2024年9月30日
自己 iPS を用いる細胞治療はもう珍しいことではなくなった。iPS による治療法が完成したことを最も実感できるとして目標とされてきた、パーキンソン病患者さんに対するドーパミン神経移植や、1型糖尿病 (IDDM) 患者さんに対する iPS 由来膵島移植も少しづつではあるが臨床例が報告されるようになってきた。
その中で今日紹介する中国南海大学病院と北京大学を中心とするチームにより報告された、自己脂肪細胞から小分子化合物の組み合わせで iPS を誘導し、それから膵島細胞を誘導したあと、1型糖尿病の女性の腹直筋鞘に移植した臨床研究は、私から見ても1型糖尿病の完治が可能になったことを示す症例報告で、1例だが最初の自己由来幹細胞を用いた糖尿病治療例として Cell に掲載された。タイトルは「Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient(化学化合物で誘導した全能性幹細胞由来膵島細胞の1型糖尿病患者さん腹直筋鞘への移植)」だ。
この研究の責任著者の一人 Hongkui Deng は、私の現役最後の年に北京大学で大学院講義に招待してくれた知人で、10年以上前から小分子化合物だけで iPS を誘導するための極めてベーシックな研究を行う、中国の幹細胞研究をリードする若手の一人だった。免疫学でも業績を残しており、ともかく優秀な若手という印象が強く、このような若手が独立して自分の道を切り開ける、フレキシブルな仕組みが中国には存在することに感心した。
その後、2020年 Nature に4段階、異なる化合物を加えて培養するだけで、時間はかかるがヒト iPS 細胞が誘導できることを示す論文を発表している。
今日紹介する論文はこの研究の延長で、化学的に誘導した iPS (CiPS) が、これまで簡単ではなかった実際の細胞治療に使えることを示したことで、この方法が普及する道を開いたと思う。
さて対象患者さんは、1型糖尿病だけでなく、肝硬変の治療として2回も肝臓移植を受けており、さらにその際、IDDM を治療するために膵臓移植まで受けた患者さんだ。ただ、血栓の心配があり、移植膵臓は除去されており、IDDM としてインシュリン治療を受けているが、コントロールが極めて難しく、低血糖発作が頻発するという問題を抱えていた。
そこで、インシュリン産生 β細胞とともに、グルカゴン産生細胞やソマトスタチン産生細胞誘導できる CiPS 由来膵島細胞を移植する可能性が検討された。
2020年、脂肪細胞から CiPS を誘導し、そこから膵島を誘導したあと、最終的に2023年6月に実際の移植を行っている。その間3年を費やしているが、ほとんどの時間を数百匹の免疫不全マウスを用いた効果検証、安全性検証、最後にサルへの移植実験を経るという、同じ細胞の徹底的な前臨床検査を行った上で、腹直筋鞘に2万個近くの膵島を移植している。この移植部位についても Honkui は腹直筋筋鞘が使えることを2023年 Nature Metabolism に発表しており、マルチタレントの徹底ぶりを披露している。
ここまでで驚くのは、実験に必要な数の細胞を同じ CiPS から調整し続けていることで、安定供給が可能なシステムができあがっていることに驚く。
さて結果だが、簡単に言ってしまうと IDDM は完治したと言っていい。まず、移植後70日目で全くインシュリン治療が必要なくなっており、それでも 300mg/dl 近くの血中グルコースが、100mg/dl と安定し、一日の98%が正常範囲で維持できるようになっている。
また、HbA1c も70日目で6.5、120日目で5.3に正常化し、そのまま一年維持されている。もちろん移植した細胞から十分量のインシュリンが分泌され、一年間安定しており、また食事により分泌の上昇も正常に見られる。
最後に副作用を調べているが、局所痛以外問題になる副作用はなく、しかも注射した部位の細胞の様子をCTや超音波で確認できる。その結果、大量の細胞を移植しているが、現在のところ腫瘍性増殖はなく、ガンマーカーも上昇がない。
以上が結果で、日本の IDDM ネットワークの目標は「治らないから治るへ」だが、少なくとも1年間治った状態が維持できたという結果で、素晴らしい結果だと思う。あとは、自己免疫性反応の制御や普及のための標準化などまだまだ時間はかかるが、IDDM の完治へ向けた大きな進展だと思う。
2024年9月29日
ダウン症は精神発達障害と外見に特徴を有しているが、他にも内臓には様々な異常を抱えている。特に有名なのが、生後に見られる一過性の白血病のような血液細胞増加はよく研究され、GATA1 遺伝子の変異によることが知られている。また、生後の赤血球異常も頻度が高く、胎児造血になんらかの異常があることがわかるが、その原因についてはよくわかっていない。
今日紹介するスタンフォード大学からの論文は、人工中絶した3−5ヶ月令のダウン症胎児の肝臓と骨髄細胞を採取、血液細胞とそれ以外に分けて、single cell 解析を 10xgenomics 社が提供する multiome を使って行った研究で、9月24日 Nature にオンライン掲載された。タイトルは「Single-cell multi-omics map of human fetal blood in Down syndrome(単一細胞レベルのマルチおミックスによるダウン症の胎児血液解析)」だ。
この研究は、ダウン症の中絶胎児の血液を調べたという点がいちばんのハイライトだと思う。この分野の研究者にとって、簡単そうでハードルは高い。ただ、細胞が得られると、この研究で行なっているように、かなり精度高く single cell レベルの遺伝子発現と、染色体の状態を調べることができ、造血に関わる転写のメカニズムを調べることができる。
この研究では、胎児肝と骨髄について21トリソミーと、正常を比較し、骨髄では両者にほとんど差がないにもかかわらず、肝臓では細胞の種類や増殖状態がダウン症で大きく変化していることを明らかにする。そしてこの変化のかなりの部分が、肝臓での造血でミトコンドリアの酸化的リン酸化の活性上昇による細胞活動の増殖が、肝臓だけで造血や特に赤血球への分化が高まる原因で、またこれに伴う活性酸素の上昇が造血に関わるゲノム変異を誘導していることを示唆している。
すなわち、トリソミーによる肝臓での環境変化が、局所的に造血細胞の代謝を変化させ、一過性に造血を高め、一過性全白血病状態を引き起こす遺伝子変異を誘導していることになる。
さらに、原因は明確でないが、ダウン症では染色体レベルの変化が特に GATA1 などの赤血球分化に関わる領域が先行して進むために、赤血球分化へのバイアスが高まっている。特に造血に関与する遺伝子発現調節に関わる、プロモーターやエンハンサー部位染色体構造と実際の RNA 発現を比較することで、染色体変化がダイレクトに遺伝子発現変化につながりやすくなり、造血バイアスが発生することを詳しく調べているが、詳細は割愛する。
ただ、このようなプロモーター、エンハンサー部位の染色体構造変化と転写は、その部位の遺伝子変異の要因になる。実際、造血異常と相関するとして特定されてきた多型の領域が、特にダウン症で活性化されていることを確認し、胎児造血だけで一過性の白血病状態が発生するのかについての一つの可能性を示している。
結果は以上で、ダウン症の中絶胎児から肝臓を採取するというハードルを乗り越えることで、胎児造血特異的な造血異常が発生する原因の一因が明らかにされた。ただ、ではトリソミーからこの異常が起こるメカニズムに関しては、おそらく代謝だけでは説明できないので、まだまだ解析が必要だ。
2024年9月28日
今日紹介するのは、スイス EPFL 、米国ペンシルバニア大学、クリーブランドクリニックなどが共同で9月24日 Nature に発表した論文だが、同じ号に CAR-T 治療を行った患者さんの予後調査を行い、導入した CAR-T 自体が IL-4 の作用を受けて2型に変化している場合に長期予後がいいことを明らかにした論文が、このグループから発表されている。
今日紹介する論文は、この結果を受けて、では IL-4 自体を CAR-T とともに使うことで、CAR-T の疲弊を抑えガンをより効率的に制御できないか調べた研究で、タイトルは「The type 2 cytokine Fc–IL-4 revitalizes exhausted CD8 + T cells against cancer(2型サイトカイン Fc-IL-4 は疲弊したガンに対する CD8 T細胞を再活性化する)」だ。
もう一つの論文でマウスを用いた研究も行って、2型サイトカインが CAR-T のキラー活性を促進していることを明らかにしているので、この研究ではストレートに CAR-T 治療の際 IL-4 を主要局所に注射して効果を調べる実験へと進んでいる。ただ、IL-4 の半減期が短いことから、免疫グロブリンの Fc を結合させて、体内で長期間作用できる IL-4 を実験に用いている。
効果は絶大で、腫瘍を植えた後、CAR-T 投与と同じ時から主要局所に2日ごと Fc-IL-4 を投与すると、局所の CAR-T の浸潤が高まり、CAR-T だけでは除去できなかったさまざまな腫瘍を完全に除去することができる。
免疫不全マウスに人間のガンと人間の CAR-T を投与する実験でも同じように効果を確かめることができる。
通常の CAR-T はサブセットの区別なく T細胞にキメラ抗原受容体遺伝子を導入するので、これまで CD8キラー細胞ではなく、これを助けるヘルパー集団に Fc-IL-4 が作用する可能性もあるが、さまざまな実験で、CD8T細胞に直接 Fc-IL-4 が働きかけること、特に抗原と反応して機能が抑制された細胞が IL-4 受容体を強く発現しており、Fc-IL-4 刺激により、BCL2 など生存シグナが再活性化され、キラー細胞として長期間働くことができることを明らかにした。
そして最後に、Fc-IL-4 が疲弊しかけた CAR-T を再活性化する機構を調べ、通常の IL-4 シグナルを伝達する STAT6 や STAT5 ではなく、インシュリン受容体と同じように PI3K-AKT を解するシグナルを通して、解糖系を活性化することで、疲弊しかけた CAR-T細胞を活性化していることを発見する。
結果は以上で、IL-4 という意外なサイトカインが CAR-T 増強因子としてクローズアップされた。アトピー治療に IL-4 を抑えることは行われているが、サイトカイン治療としては、IL-4 は遅れてきたサイトカインだと思うが、明日からでも臨床試験を始める意義は大きい(おそらくすでに進められているとは思うが)。現在 CAR-T 治療は固形ガンには有効性が低いこと、白血病に対しても半数以上で効果が短期で終わってしまう問題がある。その意味で、もう一つの論文で示された、CAR-T 生産課程で IL-4 で刺激すること、そして CAR-T 治療と共に腫瘍組織に Fc-IL-4 を注射する2種類の方法は試してほしいと思う。
2024年9月27日
我々の知性は経験によって形成されることで知性の普遍性が保証されるとするヒュームを評価しつつも、これに伴う独自の自己の消失という問題に気づき、自己を保持したままで、我々の経験は、経験以前の先験的枠組みを通ることで、普遍性を獲得すると考えたのはカントだ。「生命科学の目で読む哲学」では彼の哲学を脳科学の視点で扱おうと1年以上格闘しているが、彼が先験的な認識の枠組みとして示した空間と時間を我々の脳がどう処理しているのか、研究が進んでいる。
今日紹介するカリフォルニア大学ロサンゼルス校からの論文は、我々の前を通り過ぎるイベントに特定のルール(順番)に基づく時間制を与えたとき、それは神経細胞レベルでどう処理されているのかを調べた研究で、9月27日 Nature にオンライン掲載された。タイトルは「Human hippocampal and entorhinal neurons encode the temporal structure of experience(人間の海馬と嗅内野は経験の時間的枠組みをエンコードする)」だ。
タイトルを読むと、まさにカントの純粋理性批判の課題そのものといってもいい。しかも動物実験ではなく、人間の脳内電極を用いた研究であることが重要だ。さて、この研究が採用した課題について説明する。幸い、この論文はオープンアクセスになっているので、図の一部を拝借することにした。
右の図が課題で、研究参加者にまず多くの写真を見せその中から反応の強い写真を6枚選ぶ。その写真を上に示したピラミッド上に配置して、例えば左下の女性から順に、ピラミッド上で直接つながっている写真を見せていくことで、このピラミッド構造が頭の中に形成されるかどうかを調べている。
最初はランダムに写真を見せると、当然それぞれの写真に反応する神経だけが興奮し、他の写真に反応する神経は特別興奮することはない。ところが、ピラミッド構造に従って写真の順序を決めて提示していくと、徐々に一つの写真を見せたときその神経だけでなく、直接つながる写真に反応する神経も興奮するようになる。そして、このようなしっかりした構成が海馬と嗅内野に形成されたあと、またランダムに写真を見せると、最初と異なり構造の影響をそれぞれの神経興奮に見られる。ただ、面白いことに本人に写真の見せ方にパターンがあるかと聞くと、特にないと答えるので、このピラミッド構造は脳内に描かれていても、経験として認識されていない。ただ、我々の経験のための枠組みとして存在している。
このような構造が頭の中に形成されたあと、今度は写真を見たときの神経興奮から、その構造を計算してみると、右図にあるような完全にピラミッドではないが、順番については正確な構造が浮き上がる。これは中間に存在する写真は、並べていくときに当然現れる頻度が高いために、興奮動態が変化することで起こると考えられる。
さらに、海馬や嗅内野にこのような構造が形成されるが、海馬の構造と比べ、嗅内野の構造は比較的安定に維持されることがわかる。しかも、写真を示さないときも、この構造を維持するために繰り返し構造が頭の中で無意識に再現されていることもわかる。そして、これらの構造が、写真を見るとき暗黙の枠組みとして次に現れる写真を予想する役割があることが示された。
以上、経験(何がいつどこで)が空間化されて海馬や嗅内野で表象されていく。一度時間や空間を人間がどう表象しているか、まとめてジャーナルクラブを行おうと考えている。
2024年9月26日
様々な食品には、我々が作れないミクロニュートリエントが含まれており、その中の一部は身体に良いとして摂取を勧められる化合物も多い。これらを xenobiotics と呼んでおり、そのまま訳すと異物になるが、ポリフェノールやイソフラビンといったよく知られた化合物から人工甘味料として使われているステビオサイドまで、多種多様な Xenobiotics が存在する。これらはほとんど我々が日常食べている食品に含まれているため、わざわざサプリメントでとらなくとも毎日摂取している化合物だ。
今日紹介するイェール大学からの論文は、 多種多様なXenobiotics が、私たちの身体だけでなく細菌叢にも影響し、さらには Xenobiotics 自体も細菌叢で変化する可能性があり、このような場合には毒性を発揮するのではと着想し、150種類の Xenobiotics と細菌叢の関係を調べた研究で、9月24日 Cell にオンライン掲載された。タイトルは「Microbial transformation of dietary xenobiotics shapes gut microbiome composition(細菌叢によるXenobioticsの変化は細菌叢の構成を変える)」だ。
この研究では Xenobiotics の我々の身体に対する影響は無視して、複雑な細菌叢に対する影響に絞って調べている。まず、我々が日常接する22種類の Xenobiotics に絞り、それをヒト細菌叢に加えたとき、Xenobiotics はどのように変化するかを調べることで、多くの Xenobiotics が様々な修飾を受けることを確認している。
また、ヒト細菌叢の中から26種類のバクテリアを選び、修飾された化合物も含めて、161種類の Xenobiotics を培養に添加して、それぞれの増殖に対する影響を調べ、細菌の増殖を強く抑制できる Xenobiotics が存在することを確認している。
このように Xenobiotics が抗菌物質と同じように特定の細菌の増殖に影響があることを確認した上で、これらが細菌叢そのもののエコロジーを決める可能性に絞って研究を進めている。実際、ヒト細菌叢全体を培養して単独の細菌への影響が確認された化合物を加えると、ものによっては大きく多様性が変化することを確認し、Xenobiotics が細菌叢の構成を調整している可能性を確認する。しかも、それ自身は細菌の増殖に影響なくても、細菌叢自体により代謝変化を受け毒性が高まり、細菌叢の構成を変える化合物が存在することを確認する。すなわち、ある細菌により変化指された Xenobiotics は他の細菌の増殖に影響し、さらにそれを代謝する細菌がこの栄養を和らげる、といったダイナミックな相互作用が存在することを確認する。
そこで、この代表としてブドウに含まれるポリフェノールの一種のポリダチン、柑橘類の皮に含まれるポリフェノールの一種ヘスペリジン、そして人工甘味料として使われる菊科植物ステビアに含まれるステビオシドの3種類を選んで、細菌の種類を限定した培養で、細菌同士の相互作用に関わる可能性を探るモデル実験を行っている。選ばれたそれぞれの化合物はそれ自身では毒性がない。しかし、ここから糖鎖が除去されたアグリコン構造はバクテリアによって毒性が出る。すなわち、バクテリア同士が Xenobiotics を介して相互作用する可能性を調べる格好のモデルとなる。
期待通り、それぞれの化合物をアグリコンへと転換する酵素を持った細菌が存在すると、細菌叢の中の特定の細菌の増殖が強く抑えられる。しかし、そこにアグリコンを代謝してしまう細菌が存在すると、この毒性が消える。
このようなモデル実験を繰り返し、代謝に関わる酵素を特定した上で、ヒト細菌叢を移植したマウスを用いて、ブドウに含まれるポリフェノールポリダチンを投与する実験を行い、モデル事件通りの動態をマウス内でも観察できることを示している。
以上が結果で、我々が身体に良いとして摂取を進める多くの物質も、細菌叢のことをカウントして考えないと、ほとんど意味がないか、場合によっては良くない結果につながる可能性を示唆している。その最大の例が、人工甘味料は細菌叢が代謝して、結果として糖尿病のリスクになるという論文だろう(https://aasj.jp/news/watch/2190 )。細菌叢はもう一つの自分だと思うが、なかなか言うことを聞かない自分だ。
2024年9月25日
臨床の調査研究は、十分な数と正しい統計学的手法を用いて行って初めて結論が出るが、調べてみようという気持ちを後押しする気づきが存在することが多い。すなわち、統計学的には優位といえないが、気になる結果を示す調査研究が存在し、米国医師会が発酵する JAMA Network Open というフリーアクセス雑誌にはそのような論文が掲載されており、気づきという面では面白い。特に9月号では、強く興味を引かれた論文が2編発表されていたので紹介する。ただ統計学的には問題があることは断っておく。
最初の論文は心室細動 (VF) と脈が触れない心室頻拍 (pVT) に対する AED 処置の際、電流を流す2枚のパッドをどこに置くのがいいかという研究だ。
恥ずかしいことに AED を使うときパッドは右前胸部と左側胸部 (AL) だけと思っていたし、おそらく我が国の AED はそのように明確に指示されている。ところが実際には AL だけでなく心室部位の前後に設置する方法 (AP) もあるようで、米国では場所によって両方の可能性が示されており、さらに AL で3回ショックを与えてうまくいかないときには AP に変えるという指導もされているようだ。
この研究では VF と pVT で救急出動した255例で、救急隊員が AL、AP どちらを使ったかで循環が回復する確率を調べている。VF の場合救急車が駆けつけるまでは持たないと思うが、到着前に AED が一般人によって行われたケースが37例存在する。驚くのは、一般人が AED を行った場合は AP の方が AL より多いことだ。
いずれにせよ、調査は救急隊員が行った AED 処置時のパッドの位置が対象で、症例数が少ないので有意差と結論できないが、明らかに AP 設置の方が循環回復頻度が高い。特に体重が増えた場合、AP ではほとんど影響を受けないが、AL では体重が増えるとともに循環回復率が低下する。
AED が開発されたとき、AP、AL が比較され、ほとんど有意差がないとして、日本やヨーロッパでは AL のみ指示するようになっている。しかし、このように詳しい調査を繰り返すことは重要で、せっかく設置した AED を有効活用することが重要だと思った。
2番目の論文はニューヨークで進行中の自閉症スペクトラム (ASG) コホート研究で、Covid-19 前後に生まれた子供たちの比較、そして Covid-19 パンデミック中に母親が CoV2 に感染したケースとしなかったケースでの自閉症発症率の比較だ。
まず、Covid-19 パンデミック前と後で、ASD の発症率は変わりがない。驚くことに、パンデミック中に生まれた子供の ASD 発症率が、感染した母親からの子供の方で半減しているという結果だ。
対象の人数の問題で、もっと広範な研究が必要になるが、これが正しいとすると妊娠中のウイルス感染は必ずしも ASD 増加につながらないとする初めての結果だ。全く予想外の結果で、驚いた。
この研究は幼児期のスクリーニング結果だが、例えば我が国では子供が目にする家族以外のほとんどがマスクを着用している状況で育っており、このような環境変化の ASD 発症率に及ぼす変化も今後調べる必要があると思う。
2024年9月24日
大学で医学を学び始めてからもはや60年以上になろるが、それまで全く聞いたこともなかった細胞があることに気づかされることがしばしばだ。これは、我々の身体が細部に至るまで精巧にできており、場所場所に機能が特化した細胞を分化させていることを示している。
今日紹介するカリフォルニア大学サンフランシスコ校からの論文も、全く初耳の細胞 cerebrospinal fluid-contacting neuron (CSF-Ns) の機能についての研究で、9月18日 Nature にオンライン掲載された。タイトルは「Endogenous opioid signalling regulates spinal ependymal cell proliferation(内因性のオピオイドシグナルが脊髄の上衣細胞増殖を調整する)」だ。
脳脊髄液を通す脊髄内の回路の一つが脊髄内の中心管で、回りは上衣細胞によって取り囲まれている。この上衣細胞ライニングに割り込むように存在しているため cerebrospinal fluid contacting と名前がついたのが CSF-Ns で、鼻粘膜に存在する嗅覚細胞に似ている。ゼブラフィッシュでは脊髄の曲がりを検知して運動調節に関わる可能性が示唆されるが、脊髄を動かして運動をしない動物での機能はわかっていない。
この研究では、この細胞を特異的に染色する方法を追求し、最終的にこの細胞を脊髄から純化することに成功し、RNA発現解析からこの細胞が κオピオイド受容体を発現していることを突き止めている。次に、この受容体に結合するオピオイドの発現を探り、隣接する上衣細胞がディモルフィンをはじめとするいくつかのペプチドを発現し、κオピオイド受容体を刺激することを発見する。
脊髄組織を切り出して、CSF-Ns の興奮を生理学的に調べ、この細胞が上衣細胞から分泌されるオピオイドにより常に刺激されていること、この自然興奮反応を κオピオイド受容体阻害剤で抑えることができることを明らかにしている。一方刺激剤では自然発火は上昇しないので、上衣細胞からのオピオイドから十分な刺激が常に提供されていることを明らかにする。
次はこの自然興奮の機能だが、上皮との密接な関係から、CSF-Ns の自然興奮が上衣細胞の増殖を調節しているのではと着想し、CSF-Ns を除去、あるいはオピオイド受容体の阻害実験を行い、CSF-Ns が上衣細胞の増殖をGABA分泌を介して抑制しており、この経路が抑えられると上衣細胞の増殖が上昇することを発見する。
上衣細胞は脊髄損傷時に増殖することが知られているが、このときオピオイドシグナルを刺激剤で活性化すると、上衣細胞の増殖が抑えられる。すなわち損傷時に上衣細胞の増殖が高まるのは、損傷によりCSF-Ns からの抑制が外れることが一部寄与している可能性が示された。
そこで、脊髄損傷後長期にわたってオピオイドを接種させ脊髄組織と機能を調べると、刺激剤により上衣細胞増殖は抑えられ、損傷後の瘢痕も抑えられる。ただ、このままでは運動機能は何もしないで瘢痕形成が起こるマウスと比べると、明らかに低下する。
以上が結果で、オピオイド刺激剤や阻害剤をうまく使って脊髄損傷の瘢痕化を一定程度抑制して再生を促すという実験があるかと期待したが、残念ながら示されていない。ただ、少なくともオピオイドで調節可能な脊髄損傷治癒過程があることは間違いなく、炎症抑制とともに今後重要な標的になると期待する。
いずれにせよ、新しい細胞を一つ勉強できた。
2024年9月23日
複製開始点を特定する研究は様々な方法を用いて行われ、これまで数多くの論文が報告されているが、どうしても増殖を観察しやすい培養細胞か、あるいは胎児期の細胞に限られていた。今日紹介するジュネーブ大学からの論文は、マウスの肝臓部分切除後の再生モデルを用いて正常肝細胞が増殖するときの複製開始点を調べた研究で、9月17日 Cell にオンライン掲載された。タイトルは「In vivo DNA replication dynamics unveil aging-dependent replication stress(生体内での複製動態は老化に伴う複製ストレスを明らかにする)」だ。
大腸菌と違って、我々の大きなゲノムは様々な場所から複製を一回だけ開始する機構を備えており、そのときに複製が開始される場所を複製開始点と呼んでいる。この複製開始点は、完全に決まっているわけではなく、細胞に応じて開始点がきめられる。この論文では、肝臓再生の現場でどう複製開始点が決まるかをまず明らかにしようと実験を進めている。
まず、肝臓再生時の複製開始点を正確に割り出すための技術的検討を行っている。開始点を決定するための様々な方法があるが、この研究では DNA 複製時に取り込まれるEdU と 複製フォークを抑える hydroxyurea を組み合わせ、EdU でラベルされた DNA の配列を決め、ラベルされた配列の中から開始点をピンポイントで特定するデータ処理を合わせて、最終的に3517の開始点を特定している。
この開始点は一定の間隔で存在するものではなく、短いストレッチにいくつもの開始点が存在する場合もあるし、また長いストレッチに一つしかない場合もある。そして、最も重要なことは、4匹のマウスを比べると、ここのマウスでほぼ同じ開始点を使っていることがわかる。すなわち、肝細胞では開始点はほとんど変化しない。
細胞は分裂しながらも、そのアイデンティティーを守り生きて行く必要がある。そのためには転写が必要だが、この転写と複製がかち合うと DNA のストレスが生じ変異が起こる。そこで、肝再生時に転写される遺伝子と複製開始点との関係を調べている。
まず肝臓で転写されている遺伝子に近い開始点は早期に複製が始まる。すなわち、転写と複製がうまく調整されている。さらに調べていくと、転写される遺伝子の開始点はほぼ例外なく、遺伝しないには存在せず、転写開始点の 10−50Kb 上流か、転写終了点の 10-50Kb 下流に存在しており、まさに転写と複製がかち合わないような開始点の選び方ができている。これを人間の細胞で調べてみると、ほぼ同じことが観察され、進化的にも細胞ごとの開始点の選び方は保存されている。
面白いことに、DNA 複製ストレスがおこるよう hydroxyurea 処理を繰り返すと、それまで活性化されていなかった開始点が活性化する。そして、ストレスを関知する ATR分子を阻害すると、多くの開始点が新たに動員されてします。
次に老化マウスで同じ実験を行うと、今度は開始点がうまく働かないものが増えることがわかる。その原因を探ると、おそらく開始点近くで DNA 損傷が蓄積していたため、そこで複製ストレスが起こるためである可能性が強い。これは肝臓や神経のようにほとんど増殖しない細胞に特徴的だと考えられる。実際、このストレスを関知する ATR 分子を阻害すると、開始点の欠損は見られなくなる。このようなストレスが、細胞老化だけでなく、自然炎症を誘導し全身の老化に寄与する可能性も示している。
以上が結果で、転写と複製が本当にうまく制御されていることがよく理解できる論文で、一読を勧める。