もちろん外界から独立して内的に活動するネットワークを形成することが、脳という組織が進化する駆動力だったはずで、すべての脳を持つ生命には共通の内部状態が存在するはずだ。この問題にチャレンジしたのが今日紹介するスタンフォード大学の光遺伝学の創始者Deisseroth研究室からの論文で12月14日発行のCellに掲載予定だ。タイトルは「Ancestral circuits for coordinated modulation of brain state(脳の状態を協調して変化させる先祖から伝わる回路)」だ。
脳の内部活動ということは、脳のどこかの領域に焦点を当てられないということで、神経の全活動をモニターする必要がある。この研究では、脳全体を同時にモニターできるゼブラフィッシュの幼生を用い、全ての神経活動をカルシウム流入による蛍光でモニターした後、脳を固定して各神経細胞のアイデンティティーを神経活動に関わる分子の抗体染色と細胞の位置で特定し、この地図を蛍光でモニターした神経細胞の活動にオーバーレイすることで、脳の内的状態の変化で同調して動く神経細胞を特定している。この時、瞳孔の代わりに心臓の活動を同時にモニターし、外界の刺激との関係を測定している。
活動記録の後神経細胞を特定するとか、全ネットワークをカルシウムでモニターすること自体はこの研究が最初では勿論ないが、それでもゼブラフィッシュの全部の脳の活動をモニターし、細胞間の関連を特定できるようにしたというのはハードだけでなく、ソフト面でも大変なことだと思う。例えば、細胞の大きさのズレを直すなど、一つ一つ問題が解決されたことがわかる。この方法で、外界からの刺激に対する感覚・運動系の反応時間を脳の内部状態の指標として使えることを示している。
次に、外界からの刺激に備えた状態に内部状態が移行した時に協調して興奮する神経を探し、5種類の神経が協調的変化することを突き止め、刺激に備えるために細胞間の協調が高まって行くことを捉えている。
ゼブラフィッシュで内的な状態を研究できることを示した後、今度はマウスで音を聞いた時の舌舐めの動きを内部状態の変化に対応する反応時間として測定し、同じマウスの脳幹の神経活動をほぼ同じ方法でモニターている。そして、外界への準備が高まるとゼブラフィッシュと同じタイプの神経の協調性が増大することを示している。最後に、同じ実験を学習させた課題ではなく、光遺伝学的刺激と瞳孔の反応を用いて行い、「内部状態が外部へと開く」と言えるプロセスが、刺激にかかわらず脊髄動物共通のメカニズムで行われることを明らかにしている。その上で、脳の内部状態と瞳孔の大きさを別の神経過程として切り離せることも示している。これは、Mind wonderingを考える上でも面白い。
デフォルトの回路や、Mind wonderingの実験を見てくると、これは動物実験は難しいのではと思っていたが、その辺を見事な説得力で解決してみせるDeisserothの脳には脱帽。
カテゴリ:論文ウォッチ