2022年6月16日
今日の論文紹介は、実験的科学というより、単純なアンケート調査と思って欲しい。
私は臨床に全く携わっていないので、現在日本で自閉症あるいは自閉症スペクトラム(ASD)の診断がどのように行われ、診断後どのような医療を受けられているのかは正確に把握できていない。ただ、早く診断されると、様々な公的な支援は受けやすいだろうし、同じ問題を抱える人たちとのコミュニティーも形成しやすい。一方で、我が国でも依然として差別や無理解があるため、ASDを理由に様々なストレスを受ける心配があり、このことが診断を受けるのを遅らせる要因になると思う。
今日紹介するニューヨーク大学からの論文は、この問題を「自分が自閉症であることを早く知った方がよかったか、できるだけ遅く知った方がよかったか」という質問を、大学で学ぶASDの学生にぶつけた調査結果で、4月11日のAutism にオンライン出版された。タイトルは「Does learning you are autistic at a younger age lead to better adult outcomes?:A participatory exploration of the perspectives of autistic university students(「自分が自閉症であることを若い時に知った方が、その後の人生で良い結果をもたらすと思いますか?」について自閉症の大学生への参加型調査)」だ。
これは自由参加の研究なので、参考にはなっても科学的に結論を出せる研究ではない。しかし、これまであまり問われてこなかった問題をとりあえず聞いてみたと言う点で、今後の研究にや役立つように思う。
実際には次の3つの質問を、現在大学で学ぶASD学生に質問して78人から回答を得た小規模調査だ。また、大学生と言っても、18歳から54歳までの年齢層が混じっている。
調査では
自分が自閉症であることをいつ最初に知りましたか? 自閉症であることをどのように知りましたか? 自閉症であると聞いたときどのように感じましたか?
の三つの質問に答えてもらっている。
まず1番目の質問については、16−19歳が最も多く、あとは5歳までから15歳まで大体同じ割合で自閉症認知時期が分布している。米国でも診断が遅れることも多いことがよくわかる。
そして、認知時期とその後の生活の質を計算すると、基本的には早く知ったほうが、あとの生活の質が高まることがわかる。おそらく、様々な公的支援や、ASDコミュニティーにアクセスできることによる支援などが大きな要因だろう。
一方で、初めて知ったとき、それをポジティブに受け止められるかに関しては、成人に近づくほどポジティブに受け止められ、思春期以前ではどうしてもネガティブに受け止めてしまう傾向が見られている。
結果は以上で、総合的には早く診断して様々な支援を行うことが良いと言う結論になるのだろうが、心の問題などについては、まだまだ調べる必要があると思う。いずれにせよ、まず思いついた疑問を調べたという段階だが、間違いなく重要な課題を掘り起こしていると思う。このような問題は、国ごとに状況が異なるので、是非我が国でも調べて欲しいと思う。
2022年6月16日
昨年話題になった幻覚剤によるうつ病治療のように、この10年うつ病に対する様々な新しい治療が開発され、成果を上げている。中でも麻酔に使うケタミンを1回投与することで、長い期間うつ病症状が改善するという発見は一般にも広く知られるようになった、重要な発見だ。しかし、そのメカニズムについては、まだまだよくわかっていないことが多い。論文ウォッチでも、すでに3回もケタミンの作用機序を調べた論文を紹介した。それぞれ、ケタミンが作用する下辺縁皮質とスパイン(https://aasj.jp/news/watch/3687 )、ケタミンによる外側手綱核領域の興奮抑制(https://aasj.jp/news/watch/8066 )、さらにはケタミン作用でのmTORの役割(https://aasj.jp/news/watch/14546 )、など様々だが、全体を見渡すと、結局混乱はあっても解決はないという段階に見える。
今日紹介するイスラエル・ワイズマン研究所からの論文は、臨床的な治験のバックアップもあるようで、その意味では解決の方に道を開いてくれたかなと思える研究で、6月20日号Cellに掲載される。タイトルは「Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of Kcnq2(ケタミンの抗うつ作用はKcnq2の細胞特異的調節を介している)」だ。
ケタミンの作用機序は、神経学的な研究と、生化学・分子生物学的研究に分かれるが、この研究はまず後者のアプローチで、ケタミンにより特異的に遺伝子発現が変化する細胞と遺伝子を特定しようとしている。
実際、ケタミンの効果は遅れて現れるので、決して神経回路を単純に刺激した結果では無く、刺激によって起こる細胞のプログラムの変化に基づいていると考えられる。その意味で、この研究が用いたsingle cell RNAseqは最適の方法と言える。
研究ではケタミン注射後2日目の海馬背側部を取り出し、single cell RNAseqで解析している。そして、ケタミンが作用するグルタミン神経で発現が変化する遺伝子165種類の中から、電位依存性カリウムチャンネルKcnq2に着目する。Kcnq2は神経の興奮性を調節するチャンネルなので、真っ先に注目するのはうなずける。
脳のスライス培養で調べると、ケタミンによる刺激はKcnqチャンネル電流を上昇させる。また、ストレスでうつを誘導すると、Kcnq2の海馬での発現が低下する。そこで、kcnqがうつ症状やケタミンによる治療効果に関与しているのか、海馬でのkcnq2遺伝子ノックダウンを行い調べると、Kcnq2がノックダウンされると、ケタミンの効果は消えてしまう。すなわち、ケタミンの効果の少なくとも一部はKcnq2分子の発現を介していることが明らかになった。
そこで、ケタミン刺激と、Kcnq2チャンネルとの関係を様々なシグナル阻害剤を用いた方法で探索すると、ケタミンによりカルモジュリン/AKAP5/カルシニューリン/NEFAT経路が活性化され、Kcnq2転写が上昇することを突き止める。
もともとうつ症状は、カルシウム代謝の関わりが示されており、またカルモジュリンを標的にした治療薬も開発されており、これによりケタミンが初めてこれまでのうつ病理解と接点を持ってきたとも言える。
とすると、ケタミン刺激の代わりにKcnq2を活性化しても、うつ症状に変化が見られるはずだ。実際、Kcnq2阻害剤はうつ症状を高め、逆に活性化剤はうつ症状を抑えることが示された。
さらに、両者のシグナルは相互作用するため、ケタミンとKcnq2アゴニストを同時に投与することで、さらに長期間強い抗うつ作用が見られることも示している。
以上が結果だが、このKcnq2アゴニスト、retigabineは既に人間のうつ病への効果が示され治験中の薬剤であるらしく、Kcnq2の即効性の効果と、ケタミンの遅効性の効果を組み合わせた新しい方法の開発へ道が開かれたように思える。
2022年6月15日
今日は論文の内容より、この内容を伝える著者の立ち位置に抱いた違和感について述べてみたい。
コペンハーゲン大学が Human Genetics and Genomics Advances にオンライン発表した論文で、グリーンランドの住人のなんと30%がLDL受容体のアミノ酸変異を伴う変異を有しているという話だ。タイトルは「An LDLR missense variant poses high risk of familial hypercholesterolemia in 30% of Greenlanders and offers potential of early cardiovascular disease intervention(グリーンランド人の30%に家族性の高コレステロール血症につながるLDL受容体(LDLR)のミスセンス変異が存在し、早期の治療で循環器疾患を予防できる可能性がある)だ。
LDL受容体は、脂肪やコレステロールが詰まったリポタンパク質を細胞内に取り込み、代謝するための必須の分子で、血中コレステロールと代謝を決める重要な因子の一つで、家族性高コレステロール血症につながる様々な変異がこれまで特定されてきた。
この研究はその変異の一つで、137番目のグルタミン酸がセリンに置き換わった変異で、LDLRのLDLへの結合活性が60%に低下することが知られている。
この研究ではまず、原住民イヌイットとヨーロッパ人のゲノムが混じり合ったグリーンランド人約2000人を対象に、この変異の頻度を調べ、なんと29.5%のグリーンランド人がこのアレルを有していることを突き止めている。
この結果を見たとき、おそらくほとんどの生物学者はなぜ30%もの人に、機能低下につながるアレルが維持されているのか不思議に思うはずだ。タイトルにわざわざ30%とまで書いてあるので、その議論があるに違いないと思うはずだ。
しかし、期待は見事に裏切られ、論文ではこの変異によりLDL、特に粒子径の小さいLDLが上昇していること、リポタンパク質粒子を形成するApoAも上昇していることを示し、おそらく血中でリポタンパク質粒子のクリアランスが低下する結果、相対的にLDL、ApoAが上昇していることを示している。
そして、動脈硬化による虚血性心疾患の頻度が1.5倍にまで高まっているにもかかわらず、多くの人が未治療で、今後遺伝子診断+早期治療で病気発症を防げると結論している。
医師の目線としては特に問題ない書きようで、多くのゲノム研究論文と同じだろう。とはいえこれで終わっていいのかには異論がある。実際、なぜ極地で暮らしてきたイヌイットがこの変異を維持し続け、ヨーロッパ人と混血が始まった後も、3割の人がこの変異を有しているほうが、生物学者にとってはずっと面白い。
血中のLDL上昇が問題になるのは、最終的にそれが細胞に取り込まれるからで、逆に取り込みにくいということは、LDLRの機能が低下することで体を守っている可能性は高い。動脈硬化の主役マクロファージではLDLRだけでなく、酸化されたLSLを取り込む多くの受容体が働くため、この変異の副作用として動脈硬化はしかたがない。しかし、これを補っても余りあるベネフィットがどこかにあるのではと考えてしまう。
例えば脂の多い食事のため、細胞への取り込みが抑えられたほうが、コレステロールの毒性から守られるのか、あるいはもっと他のベネフィットがあるのか。
実際この論文のタイトルを見たとき、以前紹介したシロクマの進化論文を思い出した(https://aasj.jp/news/watch/1531 )。この研究では、ヒグマとシロクマのゲノムを比較し、ApoBやLDLなど動脈硬化で問題になる遺伝子が多くリストされることが明らかになった。すなわち、動脈硬化メカニズムを積極的に利用して、血液を寒さから守っている可能性すらある。
イヌイットから何が飛び出すか、興味は尽きない。
2022年6月15日
集中紹介2回目は、3月10日「論文ウォッチ」で既に紹介している論文だが(https://aasj.jp/news/watch/19224 )、遺伝的に起こった自閉症スペクトラム(ASD)症状を、行動学的に克服する方法にチャレンジしている点で、もう一度取り上げ、できるだけわかりやすく解説したい。
自閉症の科学はすでに50回を越しているが、遺伝的背景を探る論文が多かったように思う。ちょうど病気のゲノム研究が急速に進む時期と重なっており、また結論が出やすいということが、ゲノム研究がトップジャーナルに掲載され易かった要因だと思う。しかし、遺伝的要因があると結論して、後は遺伝子治療に任せると治療を諦めるのでは、本末転倒になる。遺伝的背景を分かった上で、遺伝と行動との間を結ぶメカニズムを解析し、その上で遺伝的背景を克服できる治療法を開発するのが医学の務めのはずだ。
その意味で今回もう一度取り上げるスイスバーゼルにあるミーシャー研究所のグループが5月4日発行のNeuronに発表した論文は(下図)は、動物モデルとはいえ、遺伝的な縛りを克服するための行動学的方法を探ったという点で、大変重要だと思う。
研究では、Shank3と呼ばれる遺伝子が欠損したマウスを用いている。このマウスは、新しい体験に戸惑い、そこから逃避するため自己反復行動を示すという点で、ASDの症状を再現しているとモデルとして、これまで多くの研究に用いられている。
実際の実験は、あまりに専門的になるので、実験の詳細は省いて、結果だけをわかりやすく解説してみる。
繰り返すが、研究の目的は、ASDモデルの行動異常を脳科学的に解析し、この異常を克服できる方法を開発することだ。
まず徹底的に行動解析を行っている。その結果、ASDモデルマウスは、新しい経験からいつも逃避しているのではなく、新しい経験が、前に経験したセッティングに似ている場合のみに、異常行動を示すことを明らかにする。すなわち、新しい経験と記憶された経験が同じかどうか比べられる場合だけ、その差に囚われてしまって、新しい経験を避けて自己反復運動に落ちることを明らかにしている。
例を挙げてさらに説明してみよう。例えば、椅子とベッドがある寝室に初めて入ったとすると、ASDモデルマウスも、正常マウスも行動は変わらない。また、この経験を記憶したあと、次にキッチンに入っても両者の行動に変化はない。ところが、最初の寝室を記憶したあと、寝室にベッドと、椅子の代わりに棚が置かれた部屋に入ると、正常マウスは棚に興味を示すのだが、ASDモデルマウスは、棚を避けて、ベッドの上で自己反復行動に陥る。
このように行動異常が特定できると、次は脳回路の解析になる。今回解明された脳回路について誤解を恐れず、極めて単純化して説明すると次のようになる。
新しい経験についての記憶が成立するとき、前頭葉での記憶回路だけでなく、これがドーパミン回路と連結することで、記憶が安定化し、新たな経験を脳にきざみこむのだが、ASDモデルマウスではこの時分泌されるドーパミンの量が普通より強く、その結果最初の経験の記憶の影響力が高まってしまう。そのため、次の時にそれと似た経験をし、最初の記憶が強く蘇ると、この時の記憶と同じでないことにこだわって、自己反復的な行動に陥ると言う説明だ。
実際、最初の記憶が成立するとき、ドーパミン分泌を抑えてやると、ASDモデルマウスでも行動は正常化し、自己反復行動はなくなる。また新しい経験をするとき、刻み込まれた記憶からドーパミンが分泌される線状体への回路を抑えてやると、同じように行動は正常化する。まだまだわかりにくいかもしれないが、要するに異常に強い記憶が形成されてしまって、それに縛られてしまうことがASDモデルマウスの行動異常の背景にあると言っていいだろう。
薬理的な治療実験で、ドーパミン分泌抑制や、前頭葉から線状体への回路遮断で行動が正常化することが示されたが、このような治療法を人間で行うことは難しい。
この研究の素晴らしさは、薬理的な実験で終わらずに、人間でも実現可能な方法をマウスモデルで探っている点だ。単純な体験の記憶が強く刻み付けられることを防ぐため、新しい体験を複雑で多様なセッテイング(例えば様々な遊具が同じ場所に置かれていて、自由に体験できるような)で行わせ、一つの対象に記憶が固定されないようにすると、行動異常はほぼ解消されることを示している。
他にも、最初の体験時に、馴染みの床敷きの匂いを加えておくだけで、記憶が強まりすぎることを防げることも示している。
これを人間に置き換えると、いつもできるだけ様々な刺激が同時に存在する豊かな環境で育て、そこには常に馴染みの匂いや音がそっと寄り添うようにすることで、新しい体験から逃避する行動を防ぐことができるという方策が示された。
脳は可塑的なので、遺伝的縛りがあっても決して諦めるなと言うことを、見事に動物を使って示した重要な研究だと思う。
2022年6月14日
だいぶ間が開いてしまったが、自閉症の科学として紹介したい論文が溜まってきたので、連続で紹介したいと思っている。
最初は、6月2日 Nature Medicine にオンライン掲載された、炎症性腸疾患(IBD)と自閉症の関係について調べた英国ブリストル大学からの論文だ。
多くの方は「IBDと自閉症?どんな関係があるの?」とその取り合わせを不思議に思われるのではと思う。ところが、両者の関係はこれまで何度も議論の的になっており、なんと捏造スキャンダルまで発生しているのだ。
1998年臨床のトップジャーナルThe Lancet に、麻疹ワクチン接種により、回腸の炎症性疾患と自閉症が合併して誘導されるとする論文が発表された。しかも記者会見まで行いこの論文が大々的に宣伝された結果、当時英国で麻疹ワクチン拒否がおこり、接種率が5割に低下、その結果多くの児童が麻疹にかかり、死者が出た。
これだけなら、リスクとベネフィット問題で終わるのだが、その後一人のジャーナリストの執念により、この論文が全くの捏造であることが明らかになり、12年を経てThe Lancetもようやく論文を取り下げることになる。
おそらく自閉症と炎症性腸疾患が簡単に結び付けられる要因の一つは、自閉症児に慢性の便秘や下痢が高頻度に見られること(https://aasj.jp/news/watch/6791 )だが、これ以外にも統計的解析から、自閉症児は典型児より5割多くクローン病になりやすく、潰瘍性大腸炎に至ってはほぼ2倍なりやすいという報告が発表されている。
この原因については、自閉症に関わる遺伝子の中にIBD発症とリンケージする遺伝子があるとする考え方と、母親の持つIBD(当然子供も同じゲノムを受け継ぐが)が、妊娠期から授乳期にかけての子供の発達に影響を及して、独立に子供の自閉症発症を助けるという考えが提唱されてきた。ただ、どうしても調べる対象の数が少なく、はっきりとした結論を得るまでには至っていない。
これに対し、自閉症についての情報も含まれている、現在得られる最も大規模なデータベースを駆使してこの問題を解こうとしたのが、今日紹介する英国ブリストル大学からの論文で、6月2日Nature Medicine に掲載された(下図)。
この研究では自閉症の、1)自閉症の親がIBDと診断される頻度、2)IBDと自閉症と相関するゲノム多形のリンケージ、3)母親のIBD発症に相関する遺伝子多形と、子供の自閉症発症に関わる遺伝子多形の相関、などが調べられている。2)、3)は、要するにIBD と自閉症に関わる共通の遺伝子があるかについての検討と言っていいだろう。
スウェーデン人大規模家族調査、50万人UK バイオバンク、AVON大規模親子コホートなどのビッグデータをもとに、私も理解が難しいビッグデータ処理法を用いた研究なので、詳細は全てすっ飛ばして、結論だけをまとめると、
親のIBD、特に母親がIBDと診断される場合、子供に自閉症が発症する率はオッズ比で1.32倍で、明らかな相関がある。 一方、自閉症とIBDのリスク遺伝子が、リンケージや相関している可能性はほとんどない。
となる。すなわち、ゲノムから見た時IBDと自閉症は全く独立した状態だが、しかし母親のIBDは妊娠中、あるいは乳児期の幼児の脳発達に影響する可能性が高いという結論だ。
おそらくIBDに限らず、妊娠中の母親の炎症は胎児の脳発達に影響すると考えられるので、妊娠を希望する場合は、歯周病も含めできるだけ炎症の元を遮断する必要がある。
2022年6月14日
β アミロイドを除去する治療法の失敗を見て、アミロイド仮説は消え去ったと勘違いする人もいるようだが、遺伝変異やダウン症の研究から、多くのアルツハイマー病でも Aβ の蓄積がアルツハイマー病の引き金を引くことは間違いない。
ただこれはかなり病気の初期の話で、一旦引き金がひかれると神経細胞内でのTauの蓄積は自立的に進むので、Aβ を除去しても手遅れになる。従って、Aβ 仮説に基づく治療を進めるためには、引き金が引かれる初期段階を捉えて治療する必要がある。
この初期段階を捉える手掛かりとして注目されるのが、Aβ 蓄積が始まると神経の興奮が上昇すること、そして神経細胞自体は正常でもシナプスの密度が低下する可能性が、動物実験から示唆されている点だ。
今日紹介するイェール大学からの論文は、このグループが発見したメタボトロピックグルタミン酸受容体に対する化合物が、動物モデルのアルツハイマー病進行を止めるという発見の、細胞学的メカニズムを明らかにした論文で、シナプス密度の現象を食い止め、アルツハイマー病(AD)の引き金を止める可能性があると期待できる。タイトルは「Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q(アルツハイマー病マウスモデルでmGluR5を標的にすることで、シナプスに C1q が結合を止めることでシナプス喪失を抑制できる)」で、6月1日 Science Translational Medicine に掲載された。
2017年、このグループは mGluR5 に結合するが、アゴニストやアンタゴニストに見られる神経症状を全く起こさない silent modulator、BMS-984923 をブリストルマイヤー社のライブラリーから特定し、これがアルツハイマー病初期に起こるシナプス喪失を止める作用があることを Cell Reports に報告した(下図)
この研究はこの続きで、この化合物の作用機序を探っている。ネズミや猿を用いて、この化合物が経口摂取可能で、神経症状を誘導しない有望な化合物であることを示している(実際に臨床治験が始まっているので当然の結果だ)。
その上で、この薬剤の効果を調べるには脳のシナプス密度を調べることができる小胞体グリコプロテイン(SV2A)を標的と標的にしたトレーサーを用いた PET をバイオマーカーとして用いられること、すなわち AD モデルマウスにこの薬物を1ヶ月服用させると、シナプス密度を回復させられることを明らかにしている。
あとは、薬剤投与による遺伝子発現変化を single cell RNA seq で調べ、AD 進行に関わるとして知られる遺伝子を含む多くの遺伝子の発現を、特に神経細胞で正常化できること、さらにはシナプスを元に戻すことで、Tau のリン酸化を防げることも明らかにしている。
そして最後に、この薬剤がおそらく Aβ と mGluR5 との結合が、シナプスに保体成分 C1q が結合して穴が開き、局所的にシナプスが失われるプロセスを防ぐことを明らかにしている。
以上が結果で、mGluR5 modulator 化合物が AD 進行を抑えるという現象論が、しっかりとメカニズム研究で裏付けられた感じだ。
基本的には Aβ 除去療法と同じ時期を狙っているのだが、Aβ と細胞との相互作用を標的にしている点で、より効果は高いように感じる。しかも経口投与可能ということで、大きなヒットになるチャンスはある。
ただ、治療可能性だけでなく、AD の初期過程を詳しく調べる大きなツールができたことも重要だと思う。
2022年6月13日
大人になってから腸内細菌叢を大きく変化させることは簡単でないが、乳幼児期はもともと細菌叢が発達する時期なので、様々な介入が可能だと考えられ、研究が進められている。この介入可能性は、細菌叢の個人差として現れる。すなわち、細菌叢の個人差が大きいということは、それぞれの子供の置かれた生活環境で大きな変化が生まれることを示唆し、裏返せばそれだけ介入により変化しうることを示している。
その意味で、生活スタイルと子供の腸内細菌叢の発達を調べることはこの分野の重要課題だが、これに正攻法でチャレンジしたのが、今日紹介するスタンフォード大学からの論文で、6月10日号 Science に掲載された。タイトルは「Robust variation in infant gut microbiome assembly across a spectrum of lifestyles(様々な生活様式を超えてみられる子供の腸内細菌層の大きな多様性)」だ。
この研究ではデータベースに集まった1900人の細菌叢16Sメタアナリシスを解析して、個人間の多様性をそれぞれの国や部族ごとに調べると、工業化された米国やスウェーデンではその多様性が極めて大きい一方、アフリカの狩猟採取民では多様性が乏しいことをまず確認している。
面白いのはこの多様性が生まれる時期を調べると、工業化が進んだ国では10ヶ月前後で強く多様化する一方、Haza族のようなアフリカ狩猟採取民では、個人差がようやく30ヶ月かかって現れることを示している。
個人差は少ないが、細菌叢構成成分の多様性は Haza族の子供は高く、面白いのは、Haza族の子供から分離された細菌の実に24%が新しい種類であることを確認している。幼児期の細菌叢の病気や免疫に対する重要性を考えると、Haza族に存在する新しい細菌種の機能を調べる意義は大きい。
また、これまで工業化とともに喪失している細菌叢や、逆に獲得された細菌叢についても調べ、まず喪失している細菌は、動物の細菌叢と共通の細菌が多く含まれており、工業化諸国の子供の細菌叢には全く存在しないこと、また工業化とともに獲得された細菌叢は、大人だけに見られる細菌叢であることを示している。
いずれにせよ、長期間かけて生活スタイルごとの細菌叢が形作られていることがはっきりした。この点をさらに詳しく調べるため、今度は細菌叢の全ゲノム配列を決定し、細菌系統内の違いも詳しくわかるよう調べると、例えば母乳により育てられることと密接に関わるビフィズス菌も、生活スタイルにより維持される系統が全く異なっていることを明らかにしている。
そして、幼児発達初期に生活スタイルの差が現れるほとんどの細菌は、母親から幼児へと伝達されやすい細菌であること示し、各生活スタイルの核になる細菌叢が、母親から子供に伝達され続けていることを示している。とはいえ、Haza族では、母親が異なっても同じ環境で居住している場合、多くの細菌叢を共有しているのに、スウェーデンでは異なる家族間の共通性は低下しており、これが個人の多様性を生んでいることがわかる。
実際にはそれぞれの細菌について、詳しく解析しているのだが全て割愛した。要するに、母から子へ、核となる細菌種が伝達されること、そして幼児期の環境の多様性、離乳後の食べ物の多様性などで、細菌叢が形成されることを示している。結論はすでに指摘されてきた話で、特に新しいことはないが、ze全ゲノム解析を含めた大規模な解析で、おそらくこの細菌種の解析結果が宝の山だとおもう。特に野生と関わる細菌種を今後工業化した社会に導入できないかという意図が見える仕事だ。
2022年6月12日
コロナ 禍のおかげで公共の場で体温を測るのが当たり前になった。幸いどこで測っても、この2年間発熱したことがないが、何もなければ私たちの体温は狭い範囲で維持できていることを実感する。
体温維持のメカニズムは解明が進んでおり、体温の上下を感じた視床下部の神経回路が、皮膚や筋肉、脂肪組織に指令を出し、汗、筋肉収縮、褐色脂肪組織刺激などを通じて、体温を調節している。これにより、外気温の変化に耐え、運動による熱の発散が行われ、体温を一定に保てている。
これに対し、なぜ感染症などの炎症で病的な発熱が起こるのかについてはよくわかっていないことが多かった。バクテリアやウイルスが増殖してそれが熱の発生源になることはほとんど考えられないので、炎症の誘導物質と、発熱調節神経回路の関係を解明する必要があった。
今日紹介するハーバード大学からの論文は、昨日のGLP-1による食欲抑制の研究と同じで、炎症感知から発熱までの神経回路を丹念に特定した研究で、6月8日Natureにオンライン掲載された。タイトルは「A preoptic neuronal population controls fever and appetite during sickness(病気の際の発熱と食欲減退を調節する視索前野神経)」だ。
この研究でも、immediate early gene発現を元に興奮神経の特定、神経間結合の特定、光遺伝学的神経刺激、特定の細胞の除去、などの遺伝子改変マウスが駆使されているが、これらを利用する出発点は、炎症刺激を最初に感知して興奮する神経の道程になる。これまでの研究で、この機能を持つ神経が視索前野に存在することがわかっていたので、LPSや人工核酸のような発熱物質を投与したとき、視索前野で興奮する神経を、single cell RNAseqを用いて特定し、これがこれまで内部温度を感受する神経とは異なることを明らかにした。
そして、この神経が炎症の重要なメディエーター、CCL2ケモカイン、プロスタグランディン2(PGE)受容体、そしてIL-1β受容体を発現しており、それぞれの因子に反応して興奮することを突き止める。すなわち、炎症のメディエーターと神経回路がつながった。
あとは、この炎症反応性の細胞を起点に発熱や食欲調節回路を一歩づつ特定する実験が行われ、
炎症反応性の視索前野細胞の興奮が異常な発熱を誘導するのに必要かつ十分。 炎症反応細胞は脳の12領域に投射しており、炎症時の起こる様々な行動変化に関わる。 発熱については、内側視床下部で熱を感知して体温発生を抑制する神経を抑制し、また褐色脂肪を刺激して発熱させる神経を活性化して、異常発熱を促すことを明らかにしている。 これと同時に、食欲低下誘導についても、食欲関連ペプチドAgRP神経回路を抑制、一方メラノコルチン発現神経回路を刺激して食欲を抑制することを示している。
以上が結果で、ハイライトは視索前野の炎症メディエーターと発熱や食欲に関わる神経回路を繋いでいる神経を明らかにしたことだろう。この神経を抑制すると、実際感染でも熱は出なくなる。
今後、異常発熱がコントロールできないときの薬剤の開発につながる可能性もあるが、発熱自体は私たちにとって病気と戦うための重要な手段なので、医療としてはこのバランスをうまく取ることが必要になる。
このような論文を読むと、また一つ勉強できた気になる。感謝
2022年6月11日
6月28日午後6時から、5月19日論文ウォッチで紹介したドイツミュンヘン大学からの論文(https://aasj.jp/news/watch/19688)を中心に、無生物から生物誕生過程を議論するジャーナルクラブを開催します。直接参加したい方は、zoomアカウントを送りますので、AASJまでメールをお送りください。以下が紹介する論文です。その模様はYoutubeでもリアル配信します。是非ご覧ください。 Youtube: https://www.youtube.com/watch?v=1GcigztiRZE
2022年6月11日
昨日に続いて消化管ホルモン GLP-1 についての研究を紹介する。
糖尿病治療での経験と、昨年発表され、また昨日紹介した論文でも確認されたセマグルタイドによる肥満治療の治験研究を元に、投与しやすいリベルサスを用いた肥満治療が、自由診療で行われていることについて言及した。昨日の論文を読むと、GLP-1 作動性細胞刺激を肥満治療に用いても何の問題もないように思えるのだが、一つだけ懸念がある。
それは、治療では GLP-1 が全身に投与される点だ。GLP-1 は消化管ホルモンとして、小腸と胃とのコミュニケーションに関わるインクレチンとしてまず特定された。また、その半減期は時間単位なので、GLP-1 受容体を発現する脳神経細胞に直接作用しているとは考えられない。従って、もし脳細胞が投与された GLP-1 の直接の標的なら、非生理学的な状態を作っていることになり、長期的に見たとき予想もしなかった副作用につながる可能性はある。
今日紹介するマウントサイナイ Icahn 医科大学からの論文は、消化管で分泌される GLP-1 が脳に働く回路を詳しく調べた、大変面白いプロの研究で6月2日 Cell にオンライン掲載された。タイトルは「An inter-organ neural circuit for appetite suppression(臓器間の神経回路が食欲を抑制する)」だ。
結論的に言うと、消化管から分泌される GLP-1 で十分食欲を抑制する効果があることを、GLP-1 分泌細胞からスタートして、神経回路をつないで明らかにした。実験の詳細を読んでいて、爆発による障害で胃壁が皮膚につながった青年を対象に、空いた穴から消化の様子を観察したウイリアム・ボーモントを思い出した。
この研究では消化管の局所神経を操作するためのあらゆる方法が用いられている。まず、GLP-1 に反応して胃が膨満し食欲が低下するのは、全て回腸のL細胞が分泌する GLP-1 の作用であることを確認している。
次に、この GLP-1 シグナルが GLP-1 受容体を発現した、intestinofugal 腸管神経に働き、この興奮が腹腔神経節へシグナルを送り、これが Nos1 を発現する胃の交感神経に働いて、動きを抑制し、胃を膨満させることを突き止める。この回路を通して胃に伝わったシグナルは、次に迷走神経ではなく、胃の痛みを伝える脊髄後根を介する感覚神経を伝って、毛様体で固有感覚として処理され、視床下部、傍視床下核に伝えられ、この神経により胃が膨満し食欲を低下させることを明らかにしている。などと簡単に書いたが、それぞれの神経を光遺伝学的に、あるいはアデノ随伴ウイルスを用いた神経接合追跡法などを用いて、一つ一つ検証し、この回路だけで胃の膨満から、食欲低下までを誘導するのに十分であることを確かめている膨大な実験だ。
おそらくこの研究のハイライトは、回腸のL細胞由来の半減期の短い GLP-1 でこの回路を刺激できること、そして迷走神経ではなく、脊髄神経を通って胃の刺激が脳に伝わり、胃を膨満させて食欲が落ちることを示し、これまで指摘されていた脳の GLP-1 受容体陽性細胞は通常ではほとんどこの反応に参加しないことを明らかにしたことだろう。
以上が結果で、まさにプロの重要な論文だと思う。もしこの研究が正しいとすると、GLP-1 受容体陽性細胞を非生理学的に刺激し続けた時、何が起こるのかよく調べて、GLP-1b作動神経活性化の長期効果や副作用をはっきりさせることが、この薬剤を肥満治療に使うための重要な条件であるように思う。