5月10日 Perturb-seqの血液臨床への応用(5月2日 Cell オンライン掲載論文)
AASJホームページ > 2023年 > 5月 > 10日

5月10日 Perturb-seqの血液臨床への応用(5月2日 Cell オンライン掲載論文)

2023年5月10日
SNSシェア

昨年6月、single cellレベルでCRISPRを利用した遺伝子改変を行い、その効果をsingle cell RNA sequencingを用いて調べるPerturb-seqという技術について述べたカリフォルニア大学サンフランシスコ校からの論文を紹介し(https://aasj.jp/news/watch/19994)、またその重要性からYoutubeでの解説も行った(https://www.youtube.com/watch?v=-Yddv5xuPC8)。

今日紹介するハーバード大学からの論文は、この技術を血液臨床にどう生かすかを様々な例で示した研究で5月2日Cellにオンライン掲載された。タイトルは「Massively parallel base editing to map variant effects in human hematopoiesis(徹底的なベース編集をもちいてヒトの造血をマップする)」だ。

以前紹介したPerturb-seqはCRISPRガイドRNAを用いて遺伝子をノックアウトし、その結果をsingle cell RNA seq(scRNAseq)で測る方法だったが、今日紹介するハーバード大学からの論文はタイトルにあるようにベース編集法を用いている。

ベース編集というのは遺伝子に切れ目を入れるのではなく、特定の核酸をAからTに変える方法で、現在ではCをGに、AをTに変える技術も進んでおり、ほぼ全てのゲノム領域を一塩基単位で変化させることが出来る。これは、血液発生に関わる多くの変異が一塩基置換であることを考えると、血液臨床に必須の技術になる。また血液は様々な系列に分化するので、scRNAseqにより一つの変異の効果を様々な系列で調べることが大事になる。実際には、突然変異の解析等、これまで個別の症例を詳しく解析する以外に方法がなかった課題が、一網打尽に明らかに出来る。

研究では、ベース編集を行う場所を決めるガイドRNAをレンチウイルスベクターでゲノムにインテグレートさせ、転写されたガイドRNAをscRNAseqで検出して、どのベース編集が起こったのかわかるようにしている。

ベース編集蛋白質は、遺伝子導入により行う代わりに、電気的穿孔による蛋白質の導入で行っている。これにより、編集効率は低下するが。一過性で安全な編集が可能になる。また、scRNAseqを用いることで、編集が行われていない血液が混じっていても、正確に効果が判定できる。

以上の技術を最も効果的に生かす課題として、将来の治療も視野にいくつかの課題を検討している。

  1. CD33発現を低下させる編集法の開発:CD33は白血病の標的抗原だが、正常細胞にも発現している。このため、移植骨髄細胞のCD33遺伝子をノックアウトする方法が試みられている。この目的で、スプライシングに関わる塩基を編集して、正常CD33を効率よくノックアウトするためのガイドRNAのスクリーニングを行い、8割以上の編集成功率が達成できる編集箇所を特定している。
  2. 遺伝子編集が期待される病気の一つがサラセミアや鎌状赤血球症のようなヘモグロビン合成のアンバランスの病気だが、発現を抑制する分子のプロモーター領域を網羅的に編集して、この発現を低下させ、幼児型ヘモグロビンの発現を低下させるために最も有効な遺伝子編集部位を特定している。
  3. GATA1は赤血球発生のマスター遺伝子で、これまでも様々な変異が知られている。この研究ではGATA1エクソンを網羅的に編集し、赤血球分化のステージごとにGATA1の機能に影響する一塩基変異を特定している。これらは既に人間の変異として知られている者を含むが、様々な形質を誘導する可能性のある遺伝子変異を網羅的にリストできたことは大きい。
  4. 強い赤血球性貧血が起こることで知られる変異を再現し、これが赤血球分化のみ影響する変異であることを正常細胞を用いて確認した。
  5. 以上は基本的にはCからTエディターを用いているが、他の塩基編集酵素でも同じ実験が可能。

以上、Perturb-seqでこれまで人間ではほとんど不可能で、マウスでようやく時間をかけて行ってきた実験が、やる気になれば一定の期間で行える時代が来たと、年寄りは目を見張るばかりだ。

カテゴリ:論文ウォッチ