過去記事一覧
AASJホームページ > 2023年

12月22日 海馬嗅内野の生後発達はヒト特異的(12月20日 Nature オンライン掲載論文)

2023年12月22日
SNSシェア

海馬の嗅内野(EC)は、海馬に入る様々なインプットの入り口として働くだけでなく、海馬の神経細胞の供給基地としても記憶に重要な働きをしている。さらに、アルツハイマー病(AD)では最初に神経変性が明確になる部位とされており、実際 AD早期に興奮神経と抑制性神経のバランスが壊れて、EC でてんかん様発作が頻発することも知られている。

今日紹介するカリフォルニア大学サンフランシスコ校からの論文は、ヒト胎児の固定標本の丁寧な検討から、ECへの神経細胞の供給が人間だけで生後1年以上にわたって続くことを示した研究で、12月20日 Nature にオンライン掲載された。タイトルは「Protracted neuronal recruitment in the temporal lobe of young children(幼児の側頭葉で見られる持続的神経供給)」だ。

ほとんどの興奮神経細胞は脳の各領域で発生するが、抑制性の介在神経細胞は ganglionic eminence(GE)と呼ばれる基底核で分裂し、その後大脳各部位へと移動する。この時前頭葉への移動するのは L(lateral)GE、M(medial)GE で増殖する神経で、胎児発生でほぼ完成するが、後方への供給は C(caudal)GE から行われ、生後も続くとされてきた。

この研究では、生後の幼児で起こる CGE から海馬EC への神経供給がいつまで続くかに焦点を当てて調べている。ただ、神経解剖学の常で、様々な分子マーカーと、解剖学的部位の名前が次から次へと現れ、正確な知識がない私たちにはついていくのが難しい論文なので、最終結論だけをまとめる。

  1. まず、EC で見られる未熟細胞が移動している像は、人間では生後1年まで続く。しかし、アカゲザルでは生まれた後の EC には全く未熟細胞が存在せず、人間では神経発達が他の動物と比べ生後も続くという概念を支持している。
  2. 移動している細胞のほとんどは抑制性の介在神経細胞で、CGE で増殖した細胞が、増殖しながら EC へと移動する。
  3. この移動は、前方への移動と同じで脳室に近いゾーンを通る神経の流れを形成して行われる。このEC への経路形成には、人間で側頭葉が融合して脳室がなくなる過程が重要で、サルではこの経路形成が出来ないことが、生後の移動が見られない原因と考えられる。
  4. 一方、生後3ヶ月を過ぎると、EC 内での移動は単一細胞レベルの移動に限られるが、1年あるいはそれ以上続く。

以上が主な結果だが、組織学的実験だけでなく、固定標本から核を分離し、単一核レベルで RNAsequencing を行い、組織学的結果をバックアップし、また発展させるという作業を繰り返しいる。おそらくこれに組織上での RNAライブラリー形成などを加えると、組織学が急速に進化していることがわかる。

結論としては、海馬EC などの側頭葉介在神経の発生が生後も続くことがはっきりさせたことが最も重要な発見だ。今後この過程の可塑性を利用することで、子供の脳発達異常を少しでも軽減するための糸口を示す結果だと思う。

カテゴリ:論文ウォッチ

12月21日 糖尿病でウイルス感染が重症化しやすい原因(12月13日 Nature オンライン掲載論文)

2023年12月21日
SNSシェア

Covid-19で一般にも知られるようになったことの一つは、糖尿病患者さんはウイルス感染が重症化しやすいことだった。抗ウイルス薬が使えるようになったときも、糖尿病患者さんは優先的対象に選ばれている。私もなぜかとしばしば問われたが、正確なメカニズムについては答えられなかった。

今日紹介するイスラエル・ワイズマン研究所からの論文は、秋田マウスと呼ばれる糖尿病マウスを主に用いてウイルス感染症が重症化する過程を解析し、古くから知られている問題に一つの回答を示した研究で、12月13日 Nature にオンライン掲載された。タイトルは「 Lung dendritic-cell metabolism underlies susceptibility to viral infection in diabetes(肺の樹状細胞の代謝異常が糖尿病でのウイルス感染重症化の背景にある)」だ。

秋田マウスは、秋田大学で開発され、Ins2遺伝子変異が特定された、いわゆるMODY(若年発症糖尿病)で、肥満を伴わない糖尿病のモデルとして使われる。この研究では、まず秋田マウスにインフルエンザウイルスを感染させ、重症化率が高いことを確認した後、免疫システムを調べると、インターフェロン上昇、ヘルパー及びキラーT細胞減少、B細胞減少、そして抑制性T細胞上昇と、ウイルスに対する免疫が低く、炎症が強いというプロフィルを示すことを明らかにする。秋田マウス以外にも他の糖尿病モデルでも同じ結果で、高血糖の影響によるウイルス抵抗性の低下は一般的現象であることも確認している。

次に、この変化に最も重要なインパクトを示す細胞について探索し、最終的にDC1と呼ばれる樹状細胞の増殖が強く抑えられ、また遺伝子発現プロファイルから、樹状細胞としての機能も低下していることが明らかになった。

そこで、DC1細胞に絞って高血糖の影響を詳しく調べると、高血糖であるにもかかわらず乳酸の合成が低下しており、代わりにTCAサイクルとピルビン酸をつなぐアセチルCoAが上昇していることを発見する。すなわち、ピルビン酸から乳酸へのルートが阻害され、アセチルCoA濃度が高まり、その多くはTCAサイクル・ルートへと流れるという、可能性を示唆する。実際、ピルビン酸キナーゼを阻害すると、同じようにDC1の機能異常が誘導されることから、高グルコースのDC1への影響は、ピルビン酸キナーゼの機能低下の要因が最も大きいことを示している。

以上の結果は、アセチルCoAが上昇すると、それ自体でヒストンアセチル化を高め、またTCAサイクルを通して合成されるαKGを介して脱メチル化反応を高めることが知られている。そこで、高グルコースに暴露されたDC1のエピジェネティック状態を調べると、ヒストンアセチル化が高まり、その結果クロマチンが変化し、DC機能の慢性的低下が誘導されることが示唆される。

そこでヒストンアセチル化阻害剤を高グルコース処理したDC1に加えると、機能を復活させられることを確認し、秋田マウスにインフルエンザを感染させ、ヒストンアセチル化阻害剤で処理すると、ウイルスの抵抗性を回復させ、キラーT細胞もある程度回復することを示している。

結果は以上で、代謝異常からエピジェネティック変化という、現在最もガン領域で注目のプロセスが糖尿病でも起こっていることを示し、これが全てではないにせよ、糖尿病でウイルス感染が重症化しやすい理由を説明できていると思う。

カテゴリ:論文ウォッチ

12月20日 オキシトシンは交感神経でも発現して脂肪代謝を調節する(12月13日 Nature オンライン掲載論文)

2023年12月20日
SNSシェア

オキシトシンは視床下部で合成されるペプチドホルモンで、授乳行動に代表される個体の社会行動を調節するホルモンとして、自閉症の治療にも使えるのではと研究が続いている。ところが、オキシトシンを投与すると、脂肪代謝にも影響があることがわかってきた。

今日紹介するハーバード大学からの論文は、オキシトシンの脂肪細胞への影響を調べる中で、オキシトシンが交感神経でも分泌され、脂肪細胞での脂肪分解を誘導していることを明らかにした研究で、12月13日 Nature にオンライン掲載された。タイトルは「Control of lipolysis by a population of oxytocinergic sympathetic neurons(オキシトシン合成性の交感神経による脂肪分解の調節)」だ。

この研究では脂肪細胞でオキシトシン受容体が発現していること、さらにオキシトシン受容体を脂肪細胞特異的にノックアウトすると、肥満にはならないが、白色脂肪細胞が肥大し、刺激による脂肪分解が強く抑制されることを示し、確かに脂肪細胞にオキシトシンが作用していることを確認している。

次にオキシトシンによる脂肪分解のメカニズムを調べると、分解を調節するペリリピンやリパーゼへのオキシトシンシグナルの直接関与は少なく、代わりに脂肪分解刺激を誘導するカテコールアミンへの反応性を高めることを明らかにしている。

実験の詳細は省いてメカニズムをまとめると、オキシトシンにより脂肪細胞が刺激されると、ERKシグナル分子を介して交感神経のカテコールアミンへの反応性が高まり、この結果脂肪滴の周りに存在するペリリピンの脂肪滴への動因、リパーゼの活性化が誘導され、脂肪分解が始まるというシナリオだ。

そこで重要になるのが「ではオキシトシンはどこから来るのか?」で、血中オキシトシンの変動を調べた結果、脳からではなく局所、おそらく脂肪を支配している交感神経由来ではないかという結論に至る。

そこで、オキシトシンの発現を見ることが出来るレポーターマウスを用いて調べた結果、脂肪に接合している交感神経の一部にオキシトシンを分泌する細胞が存在することを確認する。あとは、光遺伝学的方法を用いて、交感神経刺激によりオキシトシンが合成され、脂肪分解が高まることを明らかにしている。

結果は以上で、オキシトシンが交感神経で発現し、脂肪代謝に機能していることは驚きだ。神経系の病気の場合、脳内にオキシトシンを到達させるために、全身投与は選択肢にないが、今後受容体のアゴニストなどを利用するようになる場合は、脂肪代謝への影響も考慮する必要があるだろう。しかし、ケトーシスなどを考えると、代謝的にも自閉症には良い影響を持つ可能性はある。

カテゴリ:論文ウォッチ

12月19日 腸内の原虫による自然免疫誘導(12月13日 Cell オンライン掲載論文)

2023年12月19日
SNSシェア

昨日は腸内の溶菌ファージウイルスが喘息発症に関与している可能性についての研究を紹介したが、今日は腸内の原虫による複雑な自然免疫刺激について調べた、スタンフォード大学からの論文を紹介する。タイトルは「Metabolic diversity in commensal protists regulates intestinal immunity and trans-kingdom competition(常在原虫の代謝多様性が腸内免疫と細菌叢との競合を調節する)」で、12月13日 Cell にオンライン掲載された。

原虫は単細胞動物と理解して貰えばいいが、アメーバ、トリパノゾーマ、そしてこの論文で研究されたトリコモナスなどを指している。元々原虫は原生動物の中の病原性を持つものを指すが、ここでは病原性に関わらず原虫という名称を使う。

この研究ではまず原虫DNAを選択的に増幅するプライマーを用いたPCRを用いて、マウスとヒトで腸内に存在する原虫の種類を特定し、マウスでも人間でも数は多くないが複数の常在原虫の種類が存在すること、また都会化にしたがって種類が減ることをまず明らかにしている。

あとは、マウスに存在するメージャーな2種類、Trichomonas.casperi(Tc)とTrichomonas musculis(Tm)の2種類の原虫を人間の腸内も反映する代表として、腸内免疫および細菌叢への影響を調べている。

原虫の存在しないマウスに、Tm、Tcを移植し、腸内を調べると、どちらも大腸で増殖して、Th1 およびTh17型T細胞を誘導することを明らかにする。この増殖は細菌叢があっても影響されない。ところが小腸を調べると、Tmを移植したとき小腸Th2型T細胞が誘導されるのに対し、Tc移植では逆にTh2細胞の数が減ることを発見する。

なぜこの違いが発生するのか?これについては、小腸のタフト細胞が増加していることに注目し、原虫のコハク酸分泌能の差によるのではないかと仮説を立て(この辺は私の様な素人にはわかりにくい)、仮説通りTmだけがコハク酸を分泌するたことを確認する。すなわちTmはコハク酸によりタフト細胞を刺激し、その結果小腸でのTh2反応が誘導できると結論している。ただ、ゲノムレベルで比べると、コハク酸合成能の違いを明確には特定できていないが、原虫のTh2免疫誘導能を考えるとき、コハク酸合成能力は重要な要因であることがわかる。

次に、食事と原虫の腸内増殖について調べ、Th2免疫誘導能の高いTmの増殖は環境に存在する繊維成分に完全に依存している一方、Tcは全く依存性がないことを明らかにする。この結果、繊維成分の少ない食事を摂ると、Tmは粘液中のグリカンを消費してしまい、その結果細菌叢を大きく歪めてしまうことを発見している。

以上の結果から、同じTrichomonas科に属する原虫でも、栄養要求性、および代謝物分泌に関して大きな違いがあり、この結果腸内免疫環境および腸内細菌叢への影響が全く異なることが示された。この結果は全てマウスでの話だが、今後人間の腸内での影響を考えるとき、それぞれの原虫の代謝システムを理解することが重要であることを示している。

病原原虫はともかく、常在原虫などこれまでほとんど考えられていないと思うが、病原性がなくても一つの原虫でこれだけの効果があるとすると、今後原虫を用いたプロバイオによる免疫調節も、「免疫ケア」乳酸菌よりずっと面白いかもしれない。

カテゴリ:論文ウォッチ

12月18日 腸内の溶菌ファージと子供の喘息(12月15日 Nature Medicine オンライン掲載論文)

2023年12月18日
SNSシェア

喘息やアトピーなどの子供のアレルギー疾患と腸内細菌叢の発達の相関については多くの論文があり、腸内での免疫活性化機構についても理解が進んでいる。これに対し、ウイルスや真菌、あるいは原虫についてはあまり研究が進んでいない。たまたま先週、腸内のウイルスと原虫の免疫機構への影響についての研究が発表されていたので、今日から2回に分けて紹介する。

最初はウイルスと喘息の関係について研究したコペンハーゲン大学からの論文で12月15日 Nature Medicine にオンライン掲載された。タイトルは「The infant gut virome is associated with preschool asthma risk independently of bacteria(幼児の腸内ウイルス集団は細菌叢とは独立に就学前の喘息と関係している)」だ。

UKバイオバンクと並んで、デンマークのコホート研究は徹底して計画されており、データが蓄積されると様々な角度から研究し直すことが出来る。この研究では647人の1歳児を集め、長期観察した研究で、そのうち133人(21%)が就学前に喘息を発症しており、喘息の原因を様々な角度から調べることが出来る。

事実、同じポピュレーションを用いて、腸内細菌叢と喘息の相関が調べられ、論文として発表されている。今回は、これに加えて同じ便由来DNA配列解析データを、既に知られているウイルスデータと照らし合わせて、腸内ウイルスと喘息との相関を調べ直している。この研究でのウイルスとは、我々の細胞に感染する様々なウイルスではなく、腸内細菌叢をホストにするウイルスを指す。

これらのウイルスは caudovirs、microvirus、そして inovirus の3種類に大別でき、喘息との関係で言うと、microvirus の量が少ないと喘息になりにくい傾向が見つかるが、ウイルス自体の研究が進んでおらず、解析は難しい。

そこで、大きなグループの caudovirus に絞って喘息との関係を調べると、量が多いほど喘息の発生が高い。特に、様々な要因で誘導されバクテリアを溶菌する溶菌ファージの量と喘息とは明確な関係がある。

ただ、個々の系統と喘息との相関を調べると、不思議なことに相関がはっきりする19種類の溶菌ファージは、喘息発症と逆の相関を示す。おそらく、プロファージから溶菌ファージへと変換すること自体が免疫系に影響することから、溶菌ファージの量が喘息と相関するが、個々のウイルスレベルでは、それが存在しないことが影響するという複雑な関係になっている。

溶菌ファージはそれぞれ特定の細菌とセットになっており、細菌叢を変化させる可能性がある。ただ標的細菌と喘息との相関を調べても、ほとんど相関はない。従って、細菌叢と溶菌ウイルスは別々に喘息リスクに関わっている。

この研究では相関を詳しく検討して、ウイルスは特に一過性の喘息と相関している一方、細菌叢はより持続性の喘息と関係することを示している。また、ウイルス自体が原因であることを、ウイルスに対する自然免疫受容体TLR9 の一塩基変異が違うと、ウイルスと喘息との相関が見られなくなることから結論している。

結果は以上で、重要な結論としては子供の場合、細菌叢とウイルスデータを組みあわせると喘息リスクをさらに正確に診断できることで、残念ながら明確な介入方法示唆には至っていない。

ただ、このようなウイルス集団検索は、病気との相関だけでなく、今後の細菌叢操作にとっては極めて重要で、今後急速に発展する予感がしている。

カテゴリ:論文ウォッチ

12月17日 Christchurch型変異APOE3がアルツハイマー病でのTau異常症を抑制するメカニズム(12月11日 Cell オンライン掲載論文)

2023年12月17日
SNSシェア

2019年11月、早期にアルツハイマー病(AD)が発症するプレセニリン遺伝子変異を持っているにもかかわらず、さらに脳にはアミロイドプラークが蓄積しているにもかかわらず、ADを発症しない70歳の女性が発見され、ADが抑制される理由がAPOE3のChristchurch型変異にあることを示した論文を紹介した(https://aasj.jp/news/watch/11677)。

今日紹介するワシントン大学からの論文は、この変異をマウスに導入してAD抑制のメカニズムを詳しく検討した研究で、12月11日 Cell にオンライン掲載された。タイトルは「APOE3ch alters microglial response and suppresses Ab-induced tau seeding and spread(APOE3chはミクログリアの反応を変化させAβにより誘導されるTauの播種と伝搬を抑制する)」だ。

マウスAPOE3にChristchurch型変異を導入し(APOE3ch)、Aβが沈着しやすいように遺伝子改変したマウスを掛け合わせると、人間のケースと同じようにAD発症を抑えることが出来る。すなわち、症例を再現することが出来る。そこで、このマウスを詳しく調べて、APOE3chの作用を解析したのがこの研究になる。論文はマウスでの現象を解析し、細胞レベルの異常へと落とし込むことでメカニズムを明らかにするというスタイルになっているが、最初から結論を知った方がわかりやすいので、結論から述べる。

結論だが以下のようにまとめられる。

ミクログリアはアミロイドβにより活性化される異常Tauを貪食するのだが、TauとAPOE3が同じ受容体を使っているので、正常マウスの場合Tau取り込みが抑制される。勿論Tau異常症が起こらなければ問題はないが、Tau沈殿が始まるとこの問題がはっきりする。しかし受容体と結合力が低い変異を持つAPOE3chの場合、ミクログリアはより強くTauと結合できるので、Tau処理が適切に行われ、AD発症が遅れる。

この結論を頭に置いて、モデルマウスを見てみよう。まず、患者さんと同じで血中コレステロール異常が見られ、vLDLが上昇している。これは脂肪キャリアーを形成するAPOE3chが白血球のLDL受容体との結合力が低いため、コレステロールが血中からクリアされにくいからと説明できる。

次に、ヒト異常TauをAβ変異マウスの脳内に注射してTau異常症を誘導する実験を行うと、AβもTauもともに蓄積を強く抑制することが出来る。これはミクログリアの異常蛋白質処理能力の上昇で説明できる。実際、APOE3chマウスではアミロイドの周りのミクログリアの数が増え、活性化マーカーが発現している。

ただ、完全に説明できないのが、Aβ異常の存在するときだけ、異常Tauへの反応が高まっている点で、もしAPOE3chのLDL受容体への結合力低下だけなら、Tauだけでも処理して良いはずだ。おそらく、アミロイドによりミクログリアが活性化されることが異常Tau処理を活性化するからと考えられる。

事実、異常Tau貪食は骨髄白血球でも観察でき、またこの貪食はAPOE3を加えると抑制できる。すなわち、異常Tauの白血球への結合はAPOE3と同じレセプターを使っている。そして、APOE3の阻害活性はAPOEchでは強く低下しており、ミクログリア、APOE3、そして異常Tauの関係を再現できる。面白いのは、骨髄白血球のTau取り込みもアミロイドβの存在により活性化される。

また、アミロイドβで活性化された白血球の細胞内でのTau処理能力は強く、その結果、処理できずに遊離された異常Tauが病気を拡大させる危険性も減じる。

以上が結果で、ADではアミロイド、Tau、そしてAPOEが複雑に絡み合って発症することがよくわかる研究だ。いずれにせよ、ミクログリアを活性化し、Tauとの結合力を上昇させることで、AD発症を抑えることが出来ることが示されたことは新しい治療へとつながる。

カテゴリ:論文ウォッチ

今年最後のジャーナルクラブのお知らせ:

2023年12月16日
SNSシェア

12月23日(土曜日)午後4時各紙が選んだ生命科学今年のブレークスルーを振り返る。

科学雑誌で、今年を振り返る記事が発表される時期になってきました。今年も、12月23日(土曜日)までに発表されたニュースについて、集まった皆さんと話し会う会を開催しますので、是非皆さんの参加をお待ちします。

基本的にはZoomで行いますので、参加希望の方はメールをお送りいただけば、Zoomアカウントをお送りします。時間は午後4時から開催します。参加をお待ちします。

カテゴリ:セミナー情報

12月16日 言語を認識する回路を単一神経レベルで解析する(12月13日 Nature オンライン掲載論文)

2023年12月16日
SNSシェア

脳内に数百もの皮質電極を置いて電気活動を記録し、行動と対応させることで、例えば私が脳内でアルファベットを書く様子を再現すると、それを実際の文字へと転換することが出来るので、将来全く話せなくなったALSの患者さんとのコミュニケーションが可能になることは間違いない。

しかし、このようなデコーディングで思い浮かべたアルファベットを特定することと、意味のある単語をデコーディングすることとは全く別の話で、おそらく言語野に電極を置いて頭に浮かんだ一つのセンテンスをデコードするためには、まだまだ長い時間がかかると思う。ただ、GPTなどのモデルを介在させることで、解読は出来そうになってきたが、それでも回路レベルで音から一つの単語が分離され、その意味が前後の音の並びから理解される過程を理解するのは簡単でない。

このためには、言語の理解に関わるあらゆる領域での単一神経の記録からネットワークを再構成することが必要で、言語が人間特有の活動であることを考えると、実験的にも困難だ。

今日紹介するカリフォルニア大学サンフランシスコ校からの論文は、顔の表情を読み取ったり、聞き言葉の解読に深く関わることが知られている上側頭回 (STG) に400近い単一神経活動を記録する電極を挿入して、言葉を聞いたときの反応を調べ、STGでの言語処理について迫ろうとした研究で、12月13日 Nature にオンライン掲載された。タイトルは「Large-scale single-neuron speech sound encoding across the depth of human cortex(ヒト脳皮質の各層で話し言葉に反応する大規模単一神経記録)」だ。

これに利用された電極は、面をカバーするのではなく、一本の針に複数の電極が設置され皮質の各層から単一神経興奮を拾うことが出来る電極で、10人の患者さんのてんかん手術の際に、文章を聞かせながら記録を行っている。おそらく複数の箇所に電極を挿入して記録していると思うが、トータル記録時間は15分までに制限している。

一回の測定で150神経細胞の活動を記録できているが、同じ神経セットは同じ文章に対してはほぼ同一の反応を示すことをまず確認している。

次に、聞いた言葉の様々な要素と各神経の反応を対応させている。我々が一つの単語を単語として認識するのに約400−500msかかることが知られているが、STGで記録される活動はそれよりずっと早い、まさに一次聴覚野からすぐ入ってきた音に対する反応で100ms程度のラグで起こる。

最も重要な発見は、個々の神経反応は多様な要素それぞれに対応している点で、

  1. 文章の始まりに反応する神経細胞、
  2. 文章の後半抱けに反応する神経細胞
  3. 鼻音に強く反応する神経細胞
  4. 破裂音に反応する神経細胞
  5. 前母音に反応する神経細胞
  6. 抗母音に反応する神経細胞

などが同定される。

さらに、それぞれの神経は反応する要素に応じてSTG各領域にクラスターを形成しているが、決して一つの要素だけで固まっているのではなく、特に層別に各要素に対する神経が集まっていることが確認される。そして、同じ層の神経ほど神経結合による同期が強く見られることから、我々はまず言葉であることを認識して注意のスイッチが入ると、反応した領域内の回路で、統合が行われていることが想像される。さらにニューラルネットモデルでの解析も行っているが省略する。

結論としては、おそらく皮質中間層が最も最初におそらく視床からの刺激に反応し、その後他の層との回路で統合することで、各層への様々なインプットを統合しながら500ms程度の時間をかけて、単語の意味を再構成すると考えられる。

このように、STGでは上位のインプットと参照しながら音を単語へと転換する作業が行われている。おそらく、この反応とGPTなどのモデルを組みあわせる実験により、STGで処理された情報がどこまでLLMの単語に近いところまで到達しているのか今後わかるような気がする。いずれにせよ、単一神経活動から見ると、本当に複雑な処理が行われていることを実感する。

カテゴリ:論文ウォッチ

12月15日 つわりのメカニズム(12月13日 Nature オンライン掲載論文)

2023年12月15日
SNSシェア

つわりについては妊娠に伴うホルモンが上昇し、脳の嘔吐中枢などを刺激すると説明されているが、なぜつわりのない人がいるのかなど、実際にはよくわかっていない。ただ、最近になって、身体のストレスによって誘導され、脳幹に働いて食欲を抑え、炎症を抑える効果があるGDF15が妊娠中に増加し、これがつわりの原因ではないかと考えられるようになった。

今日紹介する南カリフォルニア大学からの論文は、GDF15とつわりの関係について様々な角度から検討し、GDF15がつわりの原因であることを明らかにした研究で1、2月13日 Nature にオンライン掲載された。タイトルは「GDF15 linked to maternal risk of nausea and vomiting during pregnancy(GDF15は妊娠中の悪心と嘔吐に連結できる)」だ。

これまでの研究でGDF15は妊娠中に上昇しつわりを起こすと考えられるのに、GDF15の機能喪失変異ではつわりがひどくなるという、矛盾する結果を説明できていなかった。

この研究ではまず、妊娠中に母親の血中GDF15が上昇すること、さらにこのほとんどが胎児由来であることを明らかにする。また、これまでつわりの強さと関わるGDF15では変異の結果GDF15が細胞外へ分泌できないことも確認している。

とすると、GDF15の元々低い母親が、GDF15を正常に分泌する子供を妊娠したときにつわりがひどくなる可能性が示唆される。これを確かめるため、母親だけが変異を持っている場合、そして母親も胎児も変異を持っている場合でつわりを比べると、母親だけが変異を持つ場合は100%つわりが発生するのに対し、子供も変異を持つとつわりの発生頻度が6割程度に低下することを確認する。

さらに、つわりと相関するコーディング領域以外の一塩基変異について調べると、おそらく調節領域の変異で、正常時のGDF15レベルが低下していることを確認する。

以上の結果から、GDF15が元々低い母親が妊娠する場合、胎児からのGDF15の影響が強く表れることを示している。

最後にこの可能性を確認するため、マウスにGDF15を注射して一定期間経過後、もう一度GDF15を投与する実験を行い、一度GDF15を経験すると、次からのGDF15の影響が軽減することを確認する。

以上、GDF15に対する反応は、おそらく受容体の適応により刺激後低下すると考えられる。このため、GDF15機能が低下した変異を持つ母親では、受容体の適応が起こらず、GDF15に対する高い感受性が維持されている。そこに妊娠により胎児からのGDF15が入ってくると、強い反応が起こるというわけだ。

この仮説を逆から確かめるため、GDF15レベルが高いことがわかっているタラセミアの妊婦さんを集めると、期待通りつわりがほとんど発生していないことがわかった。

以上のことから、胎児への影響がないという前提で、GDF15を標的にしたつわりの治療は可能になった。

カテゴリ:論文ウォッチ

12月14日 mRNAワクチンの落とし穴(12月6日 Nature オンライン掲載論文)

2023年12月14日
SNSシェア

Covid-19に関わる科学を代表する技術といえばmRNAワクチンだろう。そして、これを支える技術が昨年ノーベル賞を受賞したカリコさん達の修飾RNAといっていい。私もこのワクチンの開発スピードと効果について何度も紹介した。

シュードウリジンはmRNAに対する自然免疫反応を抑える目的で使われるが、私だけでなく、これまでそれを取り込んだmRNAは翻訳の鋳型としては問題がないと考えてきた。しかし、今日紹介するケンブリッジ大学からの論文は、シュードウリジンを取り込んだmRNAには、フレームがずれたペプチドを翻訳してしまうと言う思わぬ落とし穴があることを示し、今後シュードウリジンを取り込んだmRNAを使うために必要な塩基配列デザイン法まで示唆した重要な研究で、12月6日 Nature にオンライン掲載された。タイトルは「N 1 -methylpseudouridylation of mRNA causes +1 ribosomal frameshifting(シュードウリジンmRNAはリボゾームで一塩基のフレームシフトを誘導する)」だ。

驚くことに、N1 がメチル化されたシュードウリジン(メチルΨ)を用いたmRNAの翻訳効率についてはほとんど研究がなかったようだ。要するにこれほど普及しているにもかかわらず、非修飾mRNAと同じように翻訳されると思い込んでいたことは、科学として猛烈に反省が必要だろう。そのことに気づいたこの研究グループは、フレームがずれると初めて機能的蛋白質が出来るmRNAをデザインし、メチルΨと非修飾mRNAとで比べ、メチルΨを用いたときだけ、フレームがずれた酵素活性を持った蛋白質が作られることを確認する。

そこで、ビオンテックのRNAワクチンに使われたメチルΨを試験管内で翻訳させると3種類のフレームがずれたペプチドが合成される。そして、このワクチンで免疫したマウスは、正常スパイクだけでなく、フレームがずれて出来たペプチドに対してもT細胞反応が起こる。

次にワクチン接種を受けた人間でもスパイク以外のペプチドに免疫が誘導されていないか、アデノウイルスワクチンとmRNAワクチン接種を受けた人について調べると、ビオンテックのmRNAワクチン接種を受けた人の2割ぐらいに、フレームがずれたペプチドに対する反応を確認することが出来る。

幸い、Covid-19スパイクに対するワクチンの場合、フレームがずれて出来たペプチドに交叉する例えば自己蛋白質などがなかったため、問題は発生しなかったが、今後メチルΨを他の抗原を標的として使うとき、想定外の抗原に対する反応が副作用として発生する可能性がある。

そこで、まずフレームがずれる翻訳が起こる原因を調べていくと、アミノ酸と結合したアミノアシルtRNAとの結合力が変化したため、リボゾーム上での翻訳が止まってしまい、これを動かすためにスリップして他のtRNA と結合する結果であることを突き止める。

リボゾーム上での翻訳が停止させやすいコドン配列は特定できるので、アミノ酸はそのままでコドンだけを変異させると、メチルΨを用いてもフレームのずれを抑えることに成功している。すなわちこの問題をかなり解決することが可能であることを示している。

以上が結果で、今後メチルΨを用いる場合は慎重に翻訳反応を検討し、フレームがずれない配列に設計し直すことが重要であることがよくわかる。今後mRNAを様々な目的に使って行くためには大変重要な貢献をした研究だ。

モデルナやビオンテックのmRNAワクチンが発表されたとき、既に蓄積されていたSARSワクチンの経験から、自然の塩基配列でなく、わざわざ突然変異を導入してスパイク構造を安定化させたデザイン配列を使っているのに驚いた。すなわち、知識にもとづいてデザインすることの重要性だが、今後はフレームシフトを防ぐデザインが必須になる。反省と対策を繰り返す科学の健全性についてもよくわかる論文だと思う。

カテゴリ:論文ウォッチ
2024年11月
 123
45678910
11121314151617
18192021222324
252627282930