過去記事一覧
AASJホームページ > 2024年 > 1月

1月31日 成長ホルモン治療が原因とみられるアルツハイマー病(1月29日 Nature Medicine オンライン掲載論文)

2024年1月31日
SNSシェア

通常アルツハイマー病(AD)は、遺伝的要因が強いグループと、特別な遺伝性が明確でない散発的グループに分けられるが、最近になって医療で使われた材料に紛れ込んでいたβアミロイドがプリオンのように伝搬して発生するケースが存在することが指摘されるようになってきた。

多くの報告があるのは、子供の頃の開頭手術時に、死体由来の硬膜が使われたケースで、この場合はCerebral Amyloid Angiopathy(CAA)と呼ばれる血管にアミロイドが沈着するタイプで、一般の AD とは全く症状が異なる。

ところが今日紹介する英国医学研究センターからの論文は、小児期にさまざまな理由で、ヒト下垂体から調整された成長ホルモンを投与された中に、CAAとは異なる脳内実質にアミロイドβ が沈着する AD が発生する可能性を示した研究で、1月29日 Nature Medicine にオンライン掲載された。タイトルは「Iatrogenic Alzheimer’s disease in recipients of cadaveric pituitary-derived growth hormone(死体由来の下垂体から調整した成長ホルモン投与に起因すると考えられる医原性のアルツハイマー病)」だ。

このグループは、以前成長ホルモン投与に起因すると思われるプリオン病で亡くなった患者さんが βアミロイド沈着を併発していることに気づいて、βアミロイドもプリオン型になると AD を起こすのではと研究を進め的ている。

今回は2017年から2022年に AD と診断された患者さんで、様々な理由で成長ホルモン治療を受けていた8例を特定し、報告している。

まず成長ホルモンだが、8例全てで様々な調整法で抽出されるなかでも、Wilhelmi or Hartree modified法を用いて大量に調整されたバッチを使っていることがわかった。

散発的ADと比較したとき、まず発症が38歳から56歳と若い。一方、成長ホルモン治療後の経過時間は33-44年と比較的狭い範囲で起こっており、成長ホルモン治療に起因する可能性を示唆している。

症状では、健忘に加えて行動異常、遂行障害、さらに言語障害が早くから現れる点で散発的ADとは異なる。

また剖検例でみると、新皮質に広くアミロイド斑が見られケース、あるいは脳全体に広くアミロイド斑が見られるケースが特定され、ADでの特徴的分布とは明らかに異なる。

以上が結果で、論文の多くの部分を成長ホルモン以外の原因は考えられないかについての議論に費やして、最終的に今回示されたケースは特別な方法で人間の下垂体から抽出された成長ホルモンが原因であると結論している。

我が国でも死体由来の成長ホルモンは使われた時期があるが、どの抽出法化までは把握していない。ただ、プリオン病の発症の報告がないと言うことで、問題にされていないが、これとは別に AD 発症の可能性があると、一度調べ直すのも重要かと思う。

カテゴリ:論文ウォッチ

1月30日 Twistの謎(1月22日 Cell オンライン掲載論文)

2024年1月30日
SNSシェア

今日は完全に専門的な話になることを断っておく。そもそもTwistの謎と言ったタイトルは一般の方には何のことかわからないと思う。一方で、発生学、特に神経堤細胞から様々な間葉系細胞の発生に関わる研究分野では、この分子を知らないと“もぐり”といわれても仕方がないほど重要な分子だ。かくいう私も常に興味をひかれていた。ただ現役時代でもその理解度は低く、SnailやSlugと同じで、上皮間葉転換に関わる、すなわち神経上皮から神経堤への分化過程のマスター因子ぐらいの理解でとどまっていた。

今日紹介するスタンフォード大学からの論文は、私のTwist分子に関する理解を改めてくれた研究で、上皮間葉転換と言った単純な話ではなく、多くの遺伝子の調節領域と転写因子の特異性を調節する因子として働いているメカニズムを明らかにしており、最近読んだ転写機構についての研究では最も感動した。1月22日 Cell にオンライン掲載され、タイトルは「DNA-guided transcription factor cooperativity shapes face and limb mesenchyme(DNAによりガイドされた転写因子の相互作用が顔と四肢の間質細胞を調節する)」だ。

この研究は、発生学者なら誰もが感じる単純な疑問からスタートしている。すなわち、発生に関わる重要な転写因子は bHLH分子 とホメオボックス分子で、それぞれ E-box(EB)及びホメオドメイン(HD)と呼ばれるゲノム上の配列に結合するが、このような配列は無数に存在するだけでなく、結合するそれぞれの転写因子も一つの細胞の中で複数発現している。とすると、特定の発生に必要な調節領域だけをどのように選べるのか不思議に思う。

これに対し、発生で働いている転写調節領域はいくつかのドメインが隣接して存在しており、これにより複数の転写因子が共同することで特異性が保証できるのではと考えられてきた。

この研究では、神経堤由来間質細胞で働いている転写調節領域の中で、HD と EB が隣接している Coordinator motif が存在し、特に顔の形成にかかる間質細胞での活性が、人間とチンパンジーで大きく違っていることを見いだしていた。そして、アセチル化ヒストン結合から見られるこの領域のエンハンサー活性が、神経堤から間葉系への発生で最も高まることを明らかにした。すなわち人間とチンパンジーの顔や頭の形の違いは、この領域の活性の変化に由来すると考え、この部位に結合する転写因子の特定から始めている。

すると神経堤から間質系細胞への分化過程で発現する転写因子の中でトップにランクされたのが Twist分子で、これに続いてホメオボックス分子や bHLH分子も分子が特定されてきた。

ここでひらめいたのが、Twistにより bHLH とホメオボックス分子の相互作用が調節される可能性で、Twistと一緒に Cordinator 領域に結合する分子を調べてみると、いくつかのホメオボックス分子と TCF のような bHLH分子が特定され、仮説が正しいことが証明された。

そこで、ES細胞から神経堤由来間質細胞を誘導して、その細胞の中で Twistを人工的に分解する実験を行い、これによる転写因子の結合変化と、 Cordinator 領域のクロマチン変化を調べると、Twist がなくなると1時間でホメオボックス分子の結合が消え、その結果クロマチンが閉じて、エンハンサー活性が低下することを明らかにしている。

そして、今度はホメオボックス分子を分解させる実験と、Twist と結合するホメオボックス、bHLH そしてDNAの構造解析から、Twist と bHLH のDNAへの結合がホメオボックス分子が参加することで安定化することで、Cordinator のエンハンサー活性が転写因子特異的に調節されていることを明らかにしている。実際にはTwistが調節しているCordinator部位は数千存在するため、様々な親和性でそれぞれの領域を調節することで、間質細胞の移動や分化を調節し、顔、四肢、そして脳の形まで調節していることになる。

最後にこの Cordinator と Twist+ホメオボックス分子の結合で顔や脳の形態が実際に決定されている可能性を、顔や脳の形と相関する Twist 及び Twist と結合するホメオボックス分子の遺伝子多型、さらにはこれらが結合するCordinator領域の多型を例に検証している。

以上が結果で、ゲノムレベルのモチーフ解析から、最後は多型を利用した発生への影響検証まで、まさに重厚な発生と転写の研究で、現代の転写研究のあり方を示す見本になると思った。

カテゴリ:論文ウォッチ

1月29日 大腸菌の中で線状DNAを独立に複製させる(1月26日号 Science 掲載論文)

2024年1月29日
SNSシェア

蛋白質の三次元構造の予測が簡単になったとは言え、特定の蛋白質の機能をデザインすることは簡単でない。代わりに、機能を変化させたい遺伝子に突然変異を導入し、その中から目的の機能が達成された突然変異分子を特定する方法がある。すなわち、ダーウィン進化を用いる方法だ。

ただ、増殖速度の高い大腸菌とはいえ、導入した遺伝子だけに高率に変異を入れることは難しいため、変異が蓄積した遺伝子を特定するのが難しくなる。代わりに、大腸菌の増殖システムから独立したファージなどを用いて変異を導入することが行われており、最も有名な例がファージディスプレイを用いて抗体遺伝子を進化させる方法だろう。ただ、ファージに導入できる遺伝子の大きさはどうしても限られる。

今日紹介する英国ケンブリッジのMRCからの論文は、ファージシステムを借りつつ、線状DNAが独立に大腸菌内で増殖するシステムを作り、このDNAだけに変異を蓄積させる方法を開発し、様々な遺伝子の進化を加速させることに成功した研究で、1月26日号 Science に掲載された。タイトルは「Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli(ホストから独立した合成複製システムは大腸菌内での進化を加速する)」だ。

大腸菌複製から独立した線状DNAの複製システムの代表はファージだが、感染のために多くの遺伝子をコードしており、外部の遺伝子を導入する余地が少ない。そこで、ファージの複製システムに必要な4種類の遺伝子を大腸菌ゲノムに導入し、必要なときに転写を誘導できるようにした上で、この酵素が働く複製開始点を両端に持った遺伝子を作成し、さらに線状DNAが分解されるのを防ぐためのファージ由来RNA分解酵素阻害分子も導入している。

勿論、段階的に必要な条件をクリアする実験を繰り返した結果だが、最終的にエレクトロポレーションで導入した 20kb 近い線状DNAが大腸菌内で安定的に維持される系を作り上げている。

勿論選択がないと、外来のDNAは複製とともに脱落するが、カナマイシン耐性遺伝子を持つ線状DNAでは、カナマイシンさえ培地に加えておけばほぼ無限に遺伝子を維持することが出来る。

重要なことはファージ由来の4つの遺伝子の突然変異発生確率は、大腸菌の持つ複製システムの1000倍近くあり、しかも開始点の特異性から大腸菌の複製には全く関わらない。その結果、大腸菌のゲノムはそのままで、線状DNAの変異を短時間で蓄積させることが出来る。

これを利用すると、カナマイシン耐性遺伝子に変異を蓄積させ、なんとこれまでの方法で進化させることに成功した耐性能力のなんと100倍の耐性を発揮する新しい変異を特定している。

そこで同じ方法を蛍光蛋白質GFPに適用して、従来の蛍光強度を何千倍にも増幅することが出来ることを示している。

以上、機能を大腸菌内でテストできる方法さえあれば、今存在する蛋白質の機能をさらに進化させられる新しい合成生物学ツールが完成出来た。期待したい。

カテゴリ:論文ウォッチ

1月28日 免疫不全とCovid-19(1月24日号 Science Translational Medicine 掲載論文)

2024年1月28日
SNSシェア

Covid-19パンデミックが始まった頃、この感染症のさまざまな病態が報告された。中でも興味をひいたのが、ほとんど無症状だが何ヶ月もウイルスを排出し続けた免疫抑制治療を受けている患者さんの症例で(https://aasj.jp/news/watch/14412)、この間に一人の個人からさまざまな変異ウイウイルスが分離されるという事実だった。その後、異次元とも言える変異を重ねたオミクロン株が南アフリカで分離されると、おそらく免疫不全のエイズ患者さんが多いことがこのような変異が発生する原因ではないかと考えられた。

今日紹介するハーバード大学からの論文は、免疫不全の患者さんがCovid-19に罹患した後の感染経過とともに、患者さんの免疫反応を系統的に調べた研究で、予想通りの結果とはいえ今後のパンデミックに備える点でも重要で、1月24日号 Science Translational Medicine に掲載された。タイトルは「SARS-CoV-2 viral clearance and evolution varies by type and severity of immunodeficiency(免疫不全の種類や重症度によりSARS-Cov2のウイルス除去や進化が変わる)」だ。

この研究では、マサチューセッ総合病院でCovid-19陽性と診断された患者さんの中で、免疫不全のグループを抜き出し、さらに免疫不全を、重症の血液系腫瘍や移植治療により誘導される不全(HT)、自己免疫病治療のためのB細胞抑制治療の患者(SA)、そしてそれ以外の比較的軽い免疫不全(NA)に分けて、ウイルス除去過程、Cov2に対する免疫反応などを徹底的に調べている。

まずはっきりしたのは、軽い免疫不全の場合、感染後のコースはほとんど正常と変わらない点だ。B細胞が抑制されるSAグループでは、ほとんどの人は正常と同じコースをとるが、1割ぐらいでウイルスが除去できないケースがでてくる。さらにT/B ともに抑制されるような治療を受けている場合は、半分以上の人でウイルス除去が大幅に遅れ、50日以上ウイルスの排出が続く。

そして予想通り、長期間ウイルスを排出する患者さんでは、ウイルスの点突然変異の数が明確に上昇する。すなわち、変異ウイルスの発生元になることが確認された。この結果ウイルス感染が持続する重症の免疫不全がある場合でモノクローナル抗体治療に対する耐性が生じやすい。すなわち治療抵抗性のウイルス発生元になる。

この臨床結果が、免疫不全による結果かどうかを確認するため、最後に重症の免疫不全、軽症の免疫不全、そして正常人について、感染後の抗体反応を調べると、予想通り重症免疫不全患者さんでは感染後も抗体反応が上がらない。

最後に、T/ Bが抑制されたHT、B細胞が抑制されたSA別々に、末梢血T細胞のスパイクタンパク質に対する反応を調べると、HTグループだけで、抗原により誘導されるインターフェロン分泌が抑制され、さらに抗原に対する増殖反応がほとんど消失していることを確認している。

結果は以上で、免疫抑制治療を受けているのだから当たり前の結果といえばそれだけだが、改めて確認できたことが重要だと思う。すなわち、パンデミックで免疫不全の患者さんを守ることは、患者さんを守るだけでなく、変異ウイルスの出現を抑えて社会を守ることにつながることがはっきりした。

実際、コロナ感染が今後も続いていくことを考えると、免疫不全の患者さんへの感染予防は今も重要な課題として残っていると言える。

カテゴリ:論文ウォッチ

1月27日 アリとライオン:エコロジーの視点が明らかにする意外な因果関係(1月26日号 Science 掲載論文)

2024年1月27日
SNSシェア

「風が吹けば桶屋が儲かる」は、意外な因果の連鎖を表現した言葉で、風が吹く、土ぼこりが舞い上がる、目に入ると視力障害が増える、三味線弾きで生計を立てざるを得なくなる、三味線の材料に猫の皮が使われる、猫が減る、ネズミが増える、ネズミは桶をかじる、桶屋が儲かるという因果関係だが、江戸時代でもこの因果性を証明するのは難しいと思う。しかし、生態系を形成する動物間の相互作用は複雑で、因果の鎖は無数に存在するため、生態学では納得のいく因果性を示す必要がある。

今日紹介するワイオミング大学からの論文はアフリカサバンナで「大アリが増えるとシマウマが喜ぶ」という因果性を明らかにした研究で、1月26日号のScienceに掲載された。タイトルは「Disruption of an ant-plant mutualism shapes interactions between lions and their primary prey(アリと植物の相互関係が壊れるとライオンと主な獲物の関係が変わる)」だ。

写真はアフリカ旅行の際に撮影できたワンショットで、雌ライオンがバッファローに襲いかかっている。今日の論文を紹介する気になったのも、この写真をついでに紹介したいと思った下心もあった。

さて本題に戻ろう。東アフリカのサバンナに見られるほとんどの木はアカキア・トレパノロビウムと呼ばれるアカシアの一種で、サバンナ独特の風景を形成している(写真は私たちの研究室に在籍し現在スイスETHの教授、Tim Schroederからプレゼントされた:彼は研究者にするのが惜しいぐらいの写真家だ)。

全く知らなかったが、この木はアカシアアリと共生し、象が嫌うように仕向けて木を守っているらしい。ところが、アカシアアリはオオアリと競合関係にあり、オオアリが侵入してくると、駆逐される(実際これが東アジアのサバンナで進行している)。この結果、アカキアは象が食べ尽くしてしまい、サバンナからほとんど消滅する。オオアリの侵入によりほとんど木のないサバンナの写真が論文でも示されているが、オオアリの侵入の影響がよくわかる。その結果、サバンナの見通しがほぼ3倍に上昇する。

この研究ではオオアリ侵入地域と侵入していない地域でGPSを装着したライオンを追いかけ、犠牲になるシマウマの数をカウントしている。というのもアカシアが減って見通しがきくとライオンの襲撃を警戒しやすくなる。

見通しと犠牲になるシマウマの数は、完全に反比例し、このことが証明される。その上で、オオアリ侵入地域と非侵入地域でシマウマがライオンの獲物になる確率を計算すると、なんと1/3に減少している。

以上の結果から、オオアリが侵入するとシマウマが喜ぶという因果関係は証明されたが、ではライオンは絶滅の危機にあるのか。幸い、バッファローは見通しとは関係ないようで、シマウマの代わりにライオンのエサになっている。

オオアリの侵入した東アフリカ地域では2000年から急速に灌木が消滅している。これに呼応して、確かにライオンの獲物がシマウマからバッファローに変化していることも示している。

私は2018年にケニアを旅行したが、まさにこの因果の結果を写真で捉えたことになる。

カテゴリ:論文ウォッチ

1月26日 画期的細胞系譜研究システムの確立(1月24日 Nature オンライン掲載論文)

2024年1月26日
SNSシェア

血液発生の研究では、幹細胞から分化細胞までの細胞系譜とその間の細胞動態は極めて重要なテーマで、このために様々な細胞系譜追跡法が開発されてきた。特に最近ではバーコードを細胞に導入したり、あるいは細胞内に導入した標識遺伝子に変異を蓄積させて分化を調べるイベント記録法などが開発されている。

しかし、遺伝子導入が必要な方法はヒトでは使えない。そこに single cell テクノロジーが登場し、単一細胞レベルでゲノムに積み重なった変異をマーカーとして利用する方法が開発された。ただ単一細胞からのDNAに存在する変異を安定的に検出することは簡単でない。

今日紹介するハーバード大学からの論文は、一つの細胞に数百から1000個近く存在するミトコンドリアゲノムに注目し、この変異のパターンを用いて細胞系譜を追跡する方法を開発した研究で、これが普及するとヒトの発生や、幹細胞システムの系譜や動態、そして老化の理解が大きく進むと期待できる画期的研究で、1月24日 Nature にオンライン掲載された。タイトルは「Deciphering cell states and genealogies of human hematopoiesis(ヒト造血系の細胞の状態と系譜)」だ。

ミトコンドリアは細胞内で独立して分裂し、除去されることから、その過程で変異が起こっても、それを細胞系譜と対応させるのは難しいと考えれて来た。しかし、全の変異は統計学的過程だと考えると、数百個あるミトコンドリアに重なった変異を把握できれば、変異の統計学的分布を細胞系譜の標識として使えることは間違いない。

とは言っても技術的には大変で、一個の細胞にバーコードをつけた後、ミトコンドリア、ゲノム、RNAライブラリーを個別に作成し、それぞれを、ミトコンドリア変異、クロマチンの状態解析、そして遺伝子発現解析に使うのだから、細胞処理から配列けってまでの実験だけでなく、情報処理技術の開発も必要で、多くの困難を乗り越えて結実した研究だ。

方法を検証するために骨髄中のCD34陽性細胞を7000個ほど調べると、全体で4831個の異なる変異を特定できており、十分細胞系譜カバーできることが明らかになった。

時間とともに蓄積してきた変異を調べ直して細胞系譜を正確に追跡できるとなると、人間の発生、成長、老化、そして疾患解析と、その活用は無限に拡がる。そんな未来を示すために、この研究では人間の造血に関する従来の疑問を見事に解き明かしている。

いろいろ実験が行われているが、ここでは私たちの骨髄ではどのぐらいの数の幹細胞が働き、また幹細胞間の多様性はあるのかについての結果を照会する。

1)2人の若者の骨髄から幹細胞を純化し、それぞれ5000個程度の細胞でミトコンドリアの変異を調べると、若者では多くの幹細胞クローンが働いて、分化した細胞を作り続けていることを明らかにしている。

2)このように造血は維持には多くのクローンが働いているが、各細胞の転写因子発現を調べると幹細胞間の多様性を認めることが出来る。そのうえでそれぞれの幹細胞から分化細胞への系譜を追いかけると、分化する方向にバイアスが見られる幹細胞と、平等にほとんどの細胞を分化させる幹細胞に分かれることが示されている。おそらく、クロマチン構造の細胞ごとの小さな変化が、分化のバイアスを決めている可能性が高い。

3)骨髄で働く幹細胞クローンの減少、さらにはY染色体喪失が老化による造血変化として着目されているが、最後に76歳、78歳の高齢者の骨髄を調べている。高齢者の骨髄でも数多くのクローンが働いていることは確かだが、その中にクローンサイズが大きく拡大した数個の優性クローンが目立つことが明らかになった。これらの遺伝子発現を調べると、骨髄造血での適応性が高いクローンが急速に拡大していることがわかる。一方、Y染色体欠損を調べると、優勢になったクローンで欠失の確率が高い。ただ、それ以外のクローンでも見られることから、Y染色体は骨髄肝細胞増殖にはネガティブに働き、これを失ったクローンがより増殖して優勢なクローンになることがわかる。このように、これまでの方法では見つからなかった老化による優性クローンの出現をほとんどの高齢者で追跡できることがわかった。

かなり省略して面白い結果だけ紹介したが、標識遺伝子を導入せずにこれだけ精密な細胞のクローン解析、系譜解析が可能になったことが重要で、今後様々な組織へと研究は進むと思うし、特に発ガン領域での利用が期待できる画期的方法だと思う。

カテゴリ:論文ウォッチ

1月25日 細胞表面の糖修飾RNAは接着因子として働く(1月22日 Cell オンライン掲載論文)

2024年1月25日
SNSシェア

細胞膜上で機能している蛋白質や脂質、さらに糖鎖修飾を受けた様々な分子の機能を学ぶことは、医学や生物学を学ぶ学生の必須科目といえるが、さすがにRNAのような核酸が細胞膜分子の一つとして働いているとは考えたこともなかった。しかし、表面上の糖鎖を精製すると、その中にRNAと結合している糖鎖が存在すること、また実際糖鎖修飾を受けたRNAが細胞膜上に発現していることを示す論文が2-3年前から報告されるようになった。

今日紹介するイェール大学からの論文は、ほぼ確実となった細胞表面上の糖鎖修飾RNAの機能とその形成過程を調べた研究で、1月22日 Cell にオンライン掲載された。タイトルは「Cell surface RNAs control neutrophil recruitment(細胞膜上のRNAは白血球の遊走をコントロールする)」だ。

既に報告があるとは言え、この研究では細胞膜上のRNAを検出する独自の方法を開発し、生きた細胞上でその存在を確かめている。その結果、細胞膜上でも、蛋白質に守られて簡単にRNA分解酵素の作用を受けずに膜上に存在し続けられることを明らかにしている。

次にその機能の探索に移るが、糖鎖修飾を受けていることから白血球では細胞の遊走に関わるのではと仮説を立て、新たに開発した細胞膜上のRNAを分解する方法を用いてRNA分子を除去した細胞をマウスに注射、炎症部位への浸潤を調べている。結果は期待通りで、炎症部位への白血球遊走が強く抑えられる。しかし、骨髄や脾臓への移動は傷害されない。

炎症部位への白血球の遊走は血管内皮との相互作用で決まる。そこで、血管内皮を培養した膜上の白血球が内皮のアピカル側からべーサル側への移動を見る実験系を用いて調べると、RNA分解酵素処理により移動が抑えられること、そしてこの移動は血管内皮のP-selectin分子との接着作用を介していることを明らかにしている。

元々P-selectin分子は糖修飾を受けた脂質や蛋白質と結合することが知られていたが、白血球では膜RNA上の糖鎖が重要な働きをしていることが明らかになった。

このような機能的糖鎖修飾RNAの存在は確認されたが、次にRNAが細胞表面上に発現するメカニズムを検討し、細胞内のRNA輸送分子SDITが欠損した細胞では細胞膜へのRNAの発現がなくなることを示し、膜発現のための明確な機構が存在することを示している。

最後に、膜発現しているRNAを調べ、遺伝子をコードしていないノンコーディングRNAが糖修飾を受けて細胞表面に発現することを明らかにしている。

以上が結果で、面白いことがあるという以上に、元々様々な修飾を受けるRNAの機能多様性を思い知らされる論文だった。特に、特定の配列のRNAではなく、一定の条件を持つRNAであれば使い回せるという事実は、生命誕生前にRNAワールドがあったことを実感させてくれる。

カテゴリ:論文ウォッチ

1月24日 変異RASを抗原に使ったワクチンの治験(1月9日 Nature Medicine オンライン掲載論文)

2024年1月24日
SNSシェア

このブログでもいくつか紹介してきたが、ガン特異的な変異をネオ抗原として個人用ワクチンを作成するガン特異的免疫治療が、実用段階に入ってきた。実際に、大手の製薬会社も治験を行っていると聞く。しかし、頭が古い行政に引きずられてシークエンスベースでのガンゲノム検査が遅れている我が国ゲノム医療の現状を考えると、医療として定着するにはまだまだ時間がかかるだろう。

しかし我が国でもガン特異的免疫療法を比較的早く受けることが出来る可能性が存在する。今日紹介するMDアンダーソンガン研究所とワクチンベンチャー企業 Elicio Therapeutics からの論文は、ガンのドライバー変異RASを抗原として免疫することで、ガン特異的免疫反応を誘導でき、膵臓ガンや直腸ガンの進行を抑えることが出来ることを示した治験研究で、1月9日 Nature Medicine にオンライン掲載された。タイトルは「Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial(リンパ節に移行する変異RAS特異的両親媒性ワクチンの膵臓ガンと直腸ガンへの効果:1/2相治験)」だ。

このワクチンはアルブミンに結合する脂肪酸にRasの2種類の変異ペプチドをつないだ抗原と、同じ脂肪酸にTol9を刺激するDNAをつないだアジュバントを混合させたワクチンで、皮下注射するとすぐにアルブミンと結合し、リンパ節に選択的に移行し、そこで樹状細胞に取り込まれて免疫反応を誘導するように設計されている。

このワクチンを0.1mgから10mg まで量を変えて膵臓ガン、あるいは直腸ガンの患者さんに投与し、副作用と効果を調べている。効果については、2相観察研究として、ガンマーカー及びリキッドバイオプシーを用いてガンの盛衰をモニターしている。

結果だが、まず問題になる副作用はほとんどない。元々一般の人に投与するワクチンでないので、十分安全なワクチンと言っていいだろう。

効果の方も調べており、ワクチン接種を最後まで受けた患者さんでは、25例中21例でガンの縮小が認められ、6人ではガンの痕跡が検査上なくなっている。ただ、この評価については今後さらに大規模な治験が必要だと思う。

重要なのは、末梢血で調べたT細胞免疫反応テストで、ほとんどの患者さんで10倍以上T細胞の反応が上昇し、またCD8T細胞だけでなくCD4T細胞も反応が見られることだ。さらに特徴的なのは2種類の変異RASに対して免疫が行われたが、12番のアミノ酸の様々な変異に対しても反応が見られる点で、広い範囲のT細胞免疫が誘導されている点だ。しかも、病気のステージや、免疫前の反応性にかかわらずT細胞反応を誘導できている。

以上のことから、少なくともワクチンによって変異RASに対するT細胞反応が誘導され、ガンへの直接傷害性反応とともに、CD4T細胞反応も動員した免疫反応を誘導できることが明らかになった。とすると、どのステージであれ、どのような治療であれ、オンコパネル程度の方法でRas変異が見つかれば、治療前にワクチンを打つことが普及する可能性は大きい。その意味で、我が国でも今すぐ利用できる。

カテゴリ:論文ウォッチ

1月23日 母乳内に含まれる補体は新生児腸炎を防ぐ(1月18日 Cell オンライン掲載論文)

2024年1月23日
SNSシェア

母乳は乳児に栄養を与えるだけでなく、抗体を通して免疫を高め、さらにオリゴ糖など様々な分子で腸内環境を整える。従って、母乳に完全に代わる成分を含んだ人工乳を作るのは簡単でない。

今日紹介するジョンズ・ホプキンス大学からの論文は、母乳の予想外の複雑性を明らかにした面白い論文で、1月18日 Cell にオンライン掲載された。タイトルは「Complement in breast milk modifies offspring gut microbiota to promote infant health(母乳中の補体は新生児の腸内細菌叢を変化させて健康を増進する)」だ。

この研究では齧歯類の消化器感染症を引き起こすCitrobacter rodentium(CR菌)感染がC3やC1qのような補体成分が欠損したマウスでは重症化することに興味を持ち、追求している。

新生児特異的なので、育ての母親を代えたりする様々な実験を繰り返し、この現象が母乳から補体成分が供給されるかどうかで決まっていることを発見する。実際、補体成分が欠損した母乳で育った子供は、腸内細菌叢でも正常と比べると大きく違っている。さらに、このように異なる腸内細菌叢を補体成分の欠損した無菌マウスに移植して感染実験を行うと、補体成分欠損母乳で育った細菌叢はCR菌の感染に強い感受性を示す。すなわち、母乳の補体成分なしで育った腸内細菌叢はCR菌感染を防げない。

次にこの細菌叢活性の差を生み出す菌を探索して、ついに子宮内膜炎の原因としても知られるグラム陽性菌 Staphilococcus lentus を特定する。すなわち、母乳に補体が含まれないと、この菌が増加し、細菌叢も変化させCR菌感染への抵抗力が低下する。

最後に補体が Staphilococcus lentus を殺すメカニズムを調べ、抗体の作用ではなく、直接C1qが細菌膜表面で活性化され、膜上に補体成分が集まった孔を形成することで、細菌を殺していることを明らかにする。

以上が結果で、母乳中の補体成分が新生児の消化管感染を防いでいること、しかも抗体の助けを借りず、直接特定の細菌を殺すことで細菌叢の質を上げていることなど、母乳の複雑さを改めて理解する研究だった。

カテゴリ:論文ウォッチ

1月22日 女の涙の神経科学(12月号 PlosBiology 掲載論文)

2024年1月22日
SNSシェア

生命科学の場合、論文だけでなく、使った写真や内容を表紙として掲載したいというのは誰もが願っている。幸い私たちの研究室でも、6回表紙に採択され、そのときの表紙は現役を退いた今も事務所に飾っている。といっても、表紙になるかどうかは編集者の決定事項で、論文の善し悪しとは全く関係ない。実際、山中さんが2007年に iPS の論文を発表したときの Cell の表紙は細胞死の様子を捉えた論文の写真が使われていた。そのため、私が現役の頃は表紙にしたいと思える美しい写真が論文にあるかどうかが重要だったが、最近は内容をわかりやすく伝えるイラストも使われるようになってきた。もう一度時間を戻して、Cell が山中さんの論文を表紙のイラストとして表現するとしたら、どんなイラストになるだろうか。

PlosBiology12月号の表紙。

上に示したのは12月号 PlosBiology の表紙で、今日紹介するイスラエル・ワイズマン研究所からの論文が紹介されている。女性の涙を嗅いだ男性の脳が変化しているのを表現しているイラストで、私もこの表紙に惹かれて読んでみた。タイトルは「A chemical signal in human female tears lowers aggression in males(人間の女性の涙には男性の攻撃性を抑える化学シグナルがある)」だ。

涙の効果についての研究は特に動物で行われており、いわゆるフェロモンを通した行動制御に関わることが知られていたらしい。ただ、人間には鋤鼻器官が存在せず、視覚を通して涙に動かされることはあっても、涙中の化学物質が直接作用することはないと考えられてきた。

この研究では、20代の女性の涙を大量に集め、涙を浸ませた布を嗅いだときに起こる感情変化を調べている。動物実験から、涙物質は攻撃性を抑えることがわかっているので、これを人間でも調べる方法をまず開発している。実際には、男の被験者がゲームの中でお金をだまし取られる状況をつくり、その相手にどれだけ復讐をするか調べることで、攻撃性を測定、復讐回数を攻撃性に換算している。

さて結果だが、本当かと目を疑うほど驚く。ゲームでの話だが、涙を嗅いだときは、食塩水を嗅いだときと比べて、攻撃性が明らかに抑制されている。一方、それぞれの臭いの感知については差はない。

繰り返すが、本当かと思うほど驚く結果でおもしろいが、ここで論文を終わっていたら、奇をてらった論文で終わってしまう。幸い、この研究ではさらに脳の興奮レベルに追及を進め、この差を客観的に調べようとしている。

まず涙物質を感知するシステムが存在するのか調べるため、64種類の嗅覚受容体をそれぞれ発現させた細胞を用いて、涙物質による刺激実験を行い、4種類の嗅覚受容体が涙物質に反応することを確認している。人間には400種類の嗅覚受容体が存在し、ここで調べたのはその1/5だが、それでも大変な実験だ。この結果は涙の中に確かに臭いを特異的に刺激する物質が含まれていることを示している。

その上で、攻撃性を誘導したときの脳の反応を機能的MRIでモニターして攻撃性とともに上昇する数カ所の脳領域を特定している。この中には攻撃性に関わる領域として知られている前頭全皮質や島皮質等が含まれており、これらの領域の興奮が涙を嗅ぐことで抑制されることを明らかにしている。

最後に、これらの領域と機能的に結合している脳領域を調べ、涙を嗅ぐことによって左島皮質と扁桃体の結合が高まることも示している。すなわち、涙は脳のネットワーク結合を変化させることが出来る。

結果は以上で、涙物質が実際に存在することを嗅覚受容体を用いて明らかにした実験などから、ただ面白いだけでなく、体系的に研究が行われているのはわかる。ただ、女性の涙とそれを感知する男性という組み合わせでしか研究が行われていない点など、まだまだ研究としては甘いように思う。

カテゴリ:論文ウォッチ
2024年1月
1234567
891011121314
15161718192021
22232425262728
293031