2016年10月7日
20世紀が始まったとき、人間の平均寿命は「人間50年、化天のうちを比ぶれば・・・」と唄われたように50歳だった。その後、平均寿命は男女共80歳を超え、女性は90歳に近づこうとしている。ではどこまで寿命は伸びるのか、誰もが関心がある。これとは別に、人間の寿命の限界を科学は予測できるようになるのかも知りたいところだ。
この問題に人口統計学から迫ったのが、今日紹介するアルバート・アインシュタイン大学からの論文でNatureオンライン版に掲載された。タイトルは「Evidence for a limit to human lifespan (人の寿命の限界を示す証拠)」だ。すでにマスメディアの多くも、人間の寿命が分かったとして取り上げているようだ。しかし、よく読むとそんな単純な話ではない。
研究は先進国の人口統計を元に、様々な計算をしただけの研究で、特に方法に工夫があるわけでもない。ただ、「人間の寿命の限界」をストレートに問うたという話題性でNatureに掲載されたと思う。
まず平均寿命から見ている。これまで、感染症や栄養など、人間の寿命を縮める外的な要因を一つ一つ解決することで平均寿命は延びてきた。そして今先進国はガンと生活習慣病を克服することで、平均寿命を伸ばせるのではと考えている。これに対し、年次ごとに平均寿命の上昇率をプロットし直すと、1980年でほぼ横ばいになっていることを示して、今後平均寿命は大きく伸びないと予想している。要するに、今の医学は平均寿命を伸ばすという観点から見たときの健康に対して対策がないということだ。
次に、平均寿命が向かう限界、すなわち人間の寿命の限界を、フランス、日本、英国、米国での最高齢者の年齢を年次ごとにプロットして算出しようとしている。これによると、2000年の115歳前後を境に、最高齢者の年齢は低下傾向にあり、2010年では110歳を少し超えたぐらいになっている。これは最高齢者だけでなく、1位から5位までの最高齢者の年齢をそれぞれプロットしても同じになる。これらのデータから計算すると、125歳に達する人がでてくる確率は、0.01%、すなわち「万に一つもない」ようだ。以前紹介したように、115歳の方の血液幹細胞がたった2個まで減っているよう(
http://aasj.jp/news/watch/1464)ではさもありなんと思う
結局この研究は統計という科学からうまれた結論で、ガンや生活習慣病に対する対策が進み、また人間の老化について理解が深まれば、違った結論になる可能性はある。逆に言うと、命を相手にする医学と寿命を相手にする統計学のギャップを示している
私自身は、どこまで寿命が伸びるかの予測が医学の問題ではなく、医学にとっての平均寿命は、病気を一つ一つ克服して個々の命を伸ばした結果だと思っている。その意味で、まだまだ克服できていない病気は多い。
一つはっきりしていることは「死ぬまで私たちは生きていることだ」。その日を生きることが否定されない世の中を守るために、まだまだ努力が必要だと思う。
2016年10月6日
DNA合成時に高い確率で生じる塩基ミスマッチを修復する機能が低下すると、突然変異の頻度が上昇し、ガンになりやすいことがわかっている。実際、この機構に関わる酵素が生まれつき欠損した人では、高い頻度でガンが発生するし、またそのガン細胞を調べると、正常の何百倍もの突然変異を見つけることができる。
また、大腸癌では、このミスマッチ修復機構の異常が他の遺伝子異常に先行するのではないかと考えられている。特に、最初にこの機構に関わる遺伝子が欠損した大腸癌では、突然変異が蓄積することから、リンチ症候群として特別に分類している。
リンチ症候群のようなミスマッチ修復異常を診断するため、私たちのゲノムに広く分布する短い反復配列、マイクロサテライトの変異(マイクロサテライト不安定性:MSI)を調べるが、検査の基本は繰り返し配列をPCRで増幅して長さの分布を調べる方法が中心で、ゲノム上に分布した個々のマイクロサテライトを調べることはほとんど行われていない。
今日紹介するワシントン大学からの論文は、ガンのエクソーム配列データベースから個々のマイクロサテライトを特定するソフトを開発し、ガンでMSIが起こっているかどうか調べた研究でNature Medicineオンライン版に掲載された。タイトルは「Classification and characterization of microsatellite instability across 18 cancer type(18種類のガンに見られるマイクロサテライト不安定性の分類と特製)」だ。
この研究のハイライトは、多くのデータが存在するガンのエクソーム配列から、マイクロサテライトを抽出し、正常組織と比べて各マイクロサテライトの変異を算出するソフトを開発したことに尽きる。そのおかげで、私がこれまでマイクロサテライトやMSIについて持っていたイメージが大きく変わった。18種類、5930のガン細胞とそれに対応する正常組織のエクソーム配列を元にMSIを調べる膨大な研究で、詳細を省いて結論だけをまとめる。
1) MSIは特定のガンに集中するのではなく、頻度は異なるがほとんどのガンで見られる。すなわち、ミスマッチ修復機構の機能異常はガンで起こりやすい。
2) MSIは他の遺伝子に見られる変異と完全に相関するわけではなく、独自の変化を示す。
3) 全てのマイクロサテライトで変異が生じるのではなく、ガンに応じて変異が見られるマイクロサテライトは限られている。
4) MSIを示すマイクロサテライトの分布によりガンを分類することができるが、これはMSIが発ガン過程に何らかの影響を及ぼしていることを示唆する。
5) MSIにより変異の頻度は上昇するが、ガンの予後についてみると、MSIがあるほうが予後が良い。おそらくこれは、修復機能低下のため抗がん剤に対する感受性が上がったり、あるいは突然変異により新しいガン抗原が生まれ、免疫系の標的になるからだろう。
今後、各MSIと発ガンについて研究が進むと、これまでわからなかった発ガンの仕組みも明らかになるかもしれない。また、新しく開発されたソフトは、エクソーム配列からMSIを正確に抽出してくれる。これは、ガンの治療戦略を決めるときの大きな力になる。
現在PD1の使用をめぐって我が国では診療報酬の面から議論が行われているが、この研究からわかることは、チェックポイント治療にあたって、まずガンのエクソーム解析を行うことの重要性だ。今ならエクソーム解析はおそらく15万前後でできるのではないだろうか。抗体薬のおそらく1/4の価格だ。正しい順序で、効果の得られる人を予測し、適切に高額な薬剤を使うという順序が、価格議論の前に必要だが、我が国ではこの当たり前の議論を行うのは難しいようだ。
2016年10月5日
食事を用意している時、若妻が急に吐き気を催して「あ、つわりだ」と家族が妊娠に気づくのは、妊娠したことを表現するための映画やテレビの定番になっている。つわりがひどいお母さんは、つわりなんてないほうがいいと思っているだろうが、つわりは胎児を守るための重要な反応であると考えられてきた。実際、つわりがないと流産が多いというのが専門家の理解だ。しかし今日紹介する論文を読んで、この説が本当は完全に検証されていないことを知った。
米国国立衛生研究所からの論文で、アメリカ医師会雑誌の内科版(JAMA Internal Medicine)に掲載された。タイトルは「Association of nausea and vomiting during pregnancy with pregnancy loss, A secondary analysis of a randomized clinical trial (流産と吐き気と嘔吐の関連:無作為化臨床治験の2次解析)だ。
もちろん私もつわりがないと、流産が多いと思っていた。ただ著者らによると、これを確かめたほとんどの研究は、妊娠が確認されたあと女性を集めてつわりと流産率を調べており、診断される前のステージは全て無視した研究だったようだ。
この研究では妊娠に対するアスピリンの効果を調べる無作為化臨床試験(こんな研究も行われているのかと驚くが)に参加した対象の中から、過去に1、2回の流産を経験している女性をリクルートし、妊娠の診断がつく前から日記などの記載を通して、吐き気、嘔吐の有無を調べるとともに、妊娠経過中に起こる流産の頻度を調べている。
つわりは妊娠2週ぐらいから現れ、6週でほぼピークに達する。流産を経験しているお母さんも、8割は多かれ少なかれつわりを経験する。また、対象は流産経験がある女性は、全体の流産率は23.6%と高い。
次に、つわりの有無と、流産の相関を調べると、着床前後で見るとつわりがあるほうが、流産率が4割ほど低い。また、流産全体について見ても、吐き気、あるいは吐き気と嘔吐がある場合は流産率が約半分に減る。
以上のことから、これまで通り、つわりは良いサインということが結論できる。この研究では、吐き気だけと、嘔吐まで進む強いつわりを比較している。データで見ると、つわりが強いほうがさらに流産率が低いという結果だが、統計的には有意な差ではないようだ。
話はこれだけだが、私が学生の時習ったような話が、今ももう一度科学的に確かめられているのを見ると、感銘を受ける。また、論文として掲載されていることから、雑誌の編集者も、その重要性を理解していることがわかる。妊娠している女性に、できるだけ正確な知識を提供するため、科学的検証の手を緩めない。その意味で、素晴らしい研究だ。
2016年10月4日
今年もノーベル賞はクリスパーかと予想していたが、嬉しい誤算で大隅さんが受賞した。
このHPをオートファジーで検索すると、14編の論文が出てくるので、この現象の広がりを理解するための参考にしてほしい。
いずれにせよ、水島さんや吉森さんなど、大隅さんの優れた弟子たちが活躍しているので、オートファジーの解説に私の出番はない。代わりに、一言だけ感想を述べる。
大隅さんは、細胞の形態という揺るぐことのない現象の背景にある複雑な分子メカニズムを解明した細胞生物学者だ。現象は違っても形態と分子をつなぐ細胞生物学研究分野には世界をリードする日本人研究者が多い。細胞間結合で優れた研究を残した月田さんもその一人だ。残念ながら、月田さんは亡くなってしまったが、大隅、月田の両人が東大を離れた後、岡崎の地で自分の研究室を立ち上げたことは、私には偶然でない気がする。
岡崎研究機構には、生理学研究所と、基礎生物学研究所があるが、「基礎生物学研究所」という名前は、当時の文部省が「基礎生物学」を積極的に推進した歴史を語る証となっている。この時の精神は、科技庁と合体して新しく再編された文科省には残っていないようだが、今回のノーベル賞は、大隅さんの研究が「基礎生物学研究所」で行われ、旧文部省も基礎研究を推進するためわざわざ新しい研究所を設立する気概を持っていたことをもう一度思い出すいい機会になったのではないだろうか。
前置きが長くなってしまったが、今日紹介したいカリフォルニア大学バークレー校からの論文は視細胞が失われた網膜機能を化学物質で取り戻すという研究で10月5日号のNeuronに掲載された。タイトルは「How azobenzene photoswitches restore visual response to the blind retina (いかにしてazobennzene光スイッチが失明した網膜の視覚反応を取り戻すのか)」だ。
一昨年2月24日、光により構造変化を起こす化学化合物を眼球内に注射すると、もともと光に反応しない網膜神経節細胞が光に反応して視覚を回復させることができることを示した同じグループからの論文を紹介した(
http://aasj.jp/news/navigator/1194)。この現象は素晴らしい話だが、実はなぜ化合物を注射するだけで視覚が回復するメカニズムについてはよくわかっていなかった。
化合物が網膜神経節細胞内にどのように浸透するのか?網膜神経節細胞は光に対してOn型、On/Off型、Off型の3種類があり、全体が統合されて光を感じるが、もしこれら全てが化合物で同時に興奮するとしたら脳は混乱するはずなのに、光が感じられるのはなぜか?など、解くべき問題が残っていた。
この問題を解明したのが今回の研究で、
1) 光スイッチ化合物は、視細胞の変性に反応して神経節細胞に起こる変化の一環として発現するP2X受容体を介して細胞内に侵入する。
2) 前回ももちいた光スイッチはシアンチャンネルに結合して、光感受性のチャンネルを形成する。ただ、化合物を変えるとナトリウムチャンネルや、カリウムチャンネルを光感受性に変えることができる。
3) 不思議なことに、P2Xを介して光スイッチが流入するのはOff型の網膜神経節細胞に限られる。
以上、光スイッチ化合物がどうして網膜神経節細胞内のチャンネルを光感受性に変えることがほぼ明らかになった。
これまで光遺伝学では光感受性チャンネル遺伝子を細胞に導入して細胞を光により興奮させていたが、この方法は、全く新しい光生理学の始まりといえるだろう。
2016年10月3日
T細胞の抗原特異性を遺伝子操作でガンに発現している抗原に反応するよう変更しガンを殺す治療、CART(T細胞キメラ抗原受容体)治療は、ガンに対する免疫系の力を多くの研究者に認識させた(
http://aasj.jp/news/navigator/navi-news/2309)。しかし、この方法の利用はまだリンパ性白血病に限られており、先月紹介したように固形がんなどに広く応用するにはまだまだ超えなければならないハードルがある(
http://aasj.jp/news/watch/5729)。このハードルを超えるために、現在新しい方法の開発が進んでいるが、今月号のCellに2種類の方法に関する論文が発表された。
一つ目はスローンケッタリングガン研究所からの論文で、従来のCARTを刺激によりガンの増殖を抑える分子を分泌できるように改変することでCARTの効果を高めようとする試みだ。この方法が試みられるのはそう遠くないと思われる。
もう一つの論文はさらに未来型の遺伝子操作T細胞利用の可能性を追求した研究で、カリフォルニア大学サンフランシスコ校から10月6日号のCellに発表された。タイトルは「Engineering T cells with customized therapeutic response programs using synthetic notch receptor(合成ノッチ受容体を用いて注文に合わせて反応をプログラムするT細胞操作)」だ。
この研究では、従来のCARTのようにT細胞受容体を用いるのではなく、Notchと呼ばれる特殊なシグナル伝達経路を持つ分子の一部を使った、完全に独立した転写活性系をT細胞内に構築して、治療に必要な任意の分子をガンの周辺でのみ発現させる方法で、いわばT細胞の完全作り変えと言っていい。
筆者がSynNotchと呼ぶ受容体はNotchの細胞膜貫通部分と、細胞外にはガンに発現する抗原に対する抗体遺伝子、細胞内のシグナル伝達には強い遺伝子転写活性によく使われる分子カセット遺伝子、の3者を結合させたキメラ分子だ。期待通り働くと、この受容体を導入されたT細胞が、ガンに発現する抗原に結合すると、分子カセットが切断され、細胞膜から核内に移行、そこであらかじめ組み込んでおいた様々な遺伝子の転写を誘導できることになる。ただ、これまでのCART療法と異なり、発現させたい遺伝子もT細胞に組み込む必要がある。これにより、治療上の注文に応じてどんな分子でも発現させることができる。
論文では、理論通りサイトカイン、抗体から、T細胞の運命を決める転写因子までありとあらゆる分子を期待通り発現させられることが示されている。もちろん話題のPD1に対する抗体もT細胞が分泌するようにして、ガンの周りでだけ働かせることもできる。また、T細胞受容体を架橋できるキメラ抗体を分泌させて、本来のT細胞刺激を誘導することもできる。実際この方法を用いてガンを消失させる実験も行っている。
データは全てめでたしめでたしで、期待を持たせる。しかしよく考えると、完全に独立した転写調節系を構築しているので当然といえば当然だ。しかし、実際に利用するとき、何種類もの遺伝子を同時に導入して、期待通りの効果が得られるのかなどまだまだ越えるべきハードルは高い。間違うと「下手な考え休むににたり」で、全てが絵に描いた餅になるかもしれない。
とはいえ、ガンのキラー細胞をさらに運び屋として改変し、抗がん効果を高めるための開発競争は続くと思う。
2016年10月2日
「人が殺しあうのは、生まれつき持っている逃れられない性だろうか?」という問いは、人間の歴史の中で何度もなんども繰り返し問われてきた。考えてみると、人間同士の闘争と殺し合いの記録が歴史の大きな部分を占めている。剥き出しの闘争を抑制することに成功した現代社会でも、人気のある映画やドラマは、殺しにまつわる話が多い。
当然ホッブスを始め、古今の哲学者や政治学者も「殺し合うは人の定めか」という問いと向き合ってきた。しかしこの問いに科学的に迫ろうという意気込みの論文を読んだのは今回が初めてだ。スペイングラナダ大学からNatureオンライン版に発表された論文で、タイトルは「The phylogenetic roots of human lethal violence(殺人を犯す人間の暴力性の系統学的起源)」だ。
「科学的意気込み」と言ったが、実際にこのグループが行ったのは哺乳動物とヒトの同種間で命が失われるに至る暴力について記録している膨大な文献を検索し、全体をまとめ直した研究で、利用した文献自体の正確性などについては完全に把握されているわけではない。従って、この論文に対して多くの異論が出ることは間違いないが、この問題を科学にしようとする意気込みと、そのための卓越した着想は十分Natureに掲載される価値はあると思う。
まずこの研究では、動物の同種間の致命的暴力に関する記録を調べ、他の個体を殺すという行動が、ダーウィン的進化の結果として考えられるかを検証している。すなわち、進化に従って殺しあう暴力の頻度が持続的に上昇する傾向を持つ系統が存在するかどうかを調べている。もしそのような系統があれば、致命的暴力が進化過程で選択されてきたことになる。
1500種類の哺乳動物で調べると、多くの種で殺し合いが起こるのを見ることができる。一般的に、致命傷を負わせる力を持ち、社会生活を営む陸上動物で殺し合いの頻度が上昇する傾向が見られる。このような種全体の平均では、全死亡のうち約0.8%が同種間の殺し合いによる結果だ。
中でも注意を引くのが猿が現れてからで、多くの種で殺し合いが見られ、系統が進むとともに、この頻度が上昇するという結果だ。そしてこの進化の傾向を元に、様々な比較統計学的手法で計算して、人間での殺人による死亡率を約2%と計算している。
次にこの数字と、様々な記録から算出される人間の殺人率を比較すると、旧石器時代の遺物から計算される死亡率と予測値が一致している。その後、時代が進むにつれ、殺人による死亡率は上昇し、6世紀から13世紀ぐらいにピークを迎え、その後は低下を続け、現代では世界大戦があったものの、系統学的に予想される数値より2−3割低いレベルで収まっているという結果だ。しかも、文明化していない部族社会では、今でも殺人による死亡率は推定値より高い。
以上の結果から、殺し合うという傾向は、進化とともに私たちが獲得してきた生まれつきの性だが、文化によりそれを克服することは可能だと結論している。最初に述べたが、調査には様々な問題がありそのまま結論を鵜呑みにはできないだろう。しかし、イントロダクションでホッブスのリバイアサン、ディスカッションではルソーの社会契約論が引用され、哲学や宗教問題を科学的に扱おうとする強い意志が感じられる研究で、感銘を受けた。
2016年10月1日
免疫反応中のT細胞が疲弊するのを抑制するガン治療の標的としてPD-1しか話題にならない不思議の国日本は別として、免疫チェックポイント治療の標的は現在実用化が済んでいるPD-1やCTLA4に加えて、確実に拡大している。中でも、LAG3と呼ばれる受容体を標的にした治療は腎臓癌や膵臓癌で治験段階にあり、実用化が待たれている。
今日紹介するジョンホプキンス大学からの論文はこのLAG3がなんとパーキンソン病の原因として最も疑われている凝集したαシヌクレンの細胞内取り込みとそれに続く細胞死に関わっており、パーキンソン病の進行を遅らせる標的になりうることを示した論文で9月30日号のScienceに掲載された。タイトルは「Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3 (病的なαシヌクレンの伝達はそのLAG3との結合から始まる)」だ。
この研究の目的は凝集した病理的αシヌクレンが、神経から神経へと伝達され、また神経細胞死が誘導される最初の段階、すなわちαシヌクレンの細胞内移行に関わる分子の探索だ。多くの膜タンパクを細胞に導入しαシヌクレンとの結合を調べる実験から出てきた3種類の分子のうちの一つがLAG3で、免疫チェックポイントの標的が出てきて、おそらく著者も驚いただろう。
ただ、LAG3は神経細胞に広く発現されている。そこで、この分子をノックアウトしたり、過剰発現させた細胞を用いて、LAG3とαシヌクレンの結合によりαシヌクレンのエンドゾームへの移行が起こることを突き止める。
さらに、この移行により、病的凝集αシヌクレンが神経から神経へと伝達され、LAG3が欠損すると、この過程が強く抑制されることを示している。
次に、LAG3ノックアウトマウスを用いて、LAG3がないとαシヌクレンの凝集は確実に低下し、強くはないが脳細胞死が低下し、バーを登るテストやしがみつく力では著明な改善が見られることを示している。
最後に、LAG3に対する抗体を用いて培養細胞でのαシヌクレン取り込みを防げるか調べ、抗体に効果があることも示している。
意外な分子がパーキンソン病に関わっているという結果で、本当かどうかさらに検討が必要だ。また、これ以外にもαシヌクレンに結合する分子が見つかっているので、これらの分子の病理過程への寄与も調べる必要がある。ただ、LAG3の機能を抑制する治療薬はすでに開発され、治験段階にある。知る限りではLAG3-Igキメラ分子の安全性は第1相試験で確認されている。この点で、この研究はパーキンソン患者さんには朗報となる可能性がある。早く治験が進むことを願う。
2016年9月30日
私たちのNPO(AASJ)は、患者さんとの連帯を掲げてはいるものの、私自身のことを考えると、下り坂の体力を使って何らかの貢献をすることは難しいし、もちろん財力もない。また現役を完全に退いているので、研究を通しての貢献は言うに及ばず、「お上」とのコネも全くない。唯一できることは、患者さんの求めに応じて知識を集めてくることだ。3年これをやってみると、この点についてはだいぶ自信が出てきた。どんな病気でも、研究の現状について知りたいと思われる患者さんや家族の方は、遠慮なく連絡していただきたいと思う。
様々な病気の知識を集めていて、個人的興味を惹かれる病気があることがわかる。そのうちの一つがMECP2の欠損(RETT症候群)とMECP2重複症だ。というのも、メチル化DNAに結合する以外にほとんど機能解析が進んでいなかったこの分子の機能が、病気の解析を通して進展し、またその進展が病気の理解や治療研究にフィードバックされるといういい循環が見られるからだ。また、非特異的な転写調節分子に見えるMECP2が、かなり特異的な過程に効いている点も、発生学にとって重要に思える。
文献検索システムでMECP2を検索すると、9月だけで20近い論文が出ているのも、多くの研究者がこの分子に惹かれている証拠だと思っている。もちろん、ハッとする様な研究が目白押しというわけではないが、基礎的にも臨床的にも研究者の関心は高い様だ。
今日紹介するテキサス大学、サウスウェスタン医療センターからの論文は、MECP2を中心に様々な研究が再構成されつつあることを示す典型で、Nature Neuroscienceオンライン版に掲載された。タイトルは「MECP2 and histone deacetylase 1 and 2 in dorsal striatum collectively suppress repetitive behaviors(線条体背側に発現するMECP2とヒストン脱アセチル化酵素(hdac1とhdac2)は反復行動を抑制する)」だ。
MECP2がHDACと相互作用することが知られていたが、MECP2異常による症状がHDACの発現異常でも起こるかどうかはわかっていなかった。この研究では幾つかの予備実験の後(この結果も示されているが割愛する)、ヒストン脱メチル化酵素hdac1とhdac2両方の遺伝子を線条体でノックアウトすると、セロトニン分泌低下でも起こるのと同様のマウスの毛づくろいの頻度が上昇することを発見している。
次に、hdac1&2欠損マウスで興奮性シナプスの裏打ちタンパクの一つSapap3の発現が低下すること、そしてこの分子が欠損するとやはり毛づくろいの頻度が上がることを確認している。
MECP2欠損マウスでも毛づくろい行動の上昇が見られることから、hdacからSapap3の経路にMECP2が関わると当たりをつけ、Sapap3の遺伝子発現を調節する遺伝子領域にMECP2が結合すること、そしてSapap3遺伝子を線条体に導入することで、MECP2欠損による毛づくろい行動異常が治ることを示している。
論文としては、最初からhdac,Sapap3,MECP2の三者が関連するというストーリーがあったように思えるが、MECP2と特異的な分子を結びつけた点では、病気の理解に重要な一歩になると思う。
この様な論文を見ていて思うのだが、MECP2欠損マウスを調べるなら、どうして MECP2c重複マウスをついでに調べないのかという点だ。特に、Sapap3が重複症でどうなっているかはMECP2研究上も、病気の理解の上でもとても重要な実験だと思う。簡単な実験だから、早く結果が出てくることを期待する。
2016年9月29日
専門的な論文紹介が続いたので、今回は一般の人にもわかりやすい論文を選んだ。
我が国を始め、多くの先進国では戦後急速にアトピーや喘息などのアレルギー性疾患が増加している。この原因として、都会の清潔な環境で子供が育つ様になり、早い機会にアレルゲンに暴露されないためであると考える研究者が多い。さらに、腸内細菌叢の多様性の低下もアレルギーの増加に寄与すると指摘されている。この二つの可能性が示すことは、要するに「衛生的な環境」で子供時代を過ごすことの危険性だ。
今日紹介するオーストラリアを中心にした国際共同論文は、都会と農村の暮らしの違いが、この「衛生的な環境」の違いを反映しているかどうか調べた研究で胸部疾患の臨床誌Thoraxオンライン版に掲載された。タイトルは「The effects of growing up on a farm on adult lung function and allergic phenotypes : an international population-based study(田舎で育つことの成人の肺機能とアレルギー形質に及ぼす影響:集団調査研究)」だ。
この研究はヨーロッパとオーストラリア22カ国からリクルートされ、現在コホート研究の対象になっている成人にアンケート調査を行い、1)農家、2)小さな町及び郊外、3)都会、のいずれで5歳まで育ったかを調べている。予想通り、農家で育つ率は先進国で低く9、2%にとどまっている。
次に、この中からサンプリングした人たちに肺機能検査、メタコリンによる喘息誘発試験、皮膚のアトピー検査などを行い、成長した環境と、成人になってからのアレルギー罹患率、及び肺機能との相関を調べている。
答えは期待通りで、都会、郊外、農家についてみると、気管支過敏性:18%16%,12%、アトピー全般:38%,31%,18%、喘息罹患率:6.1%, 5.5%, 4.4%、鼻アレルギー:36%,32%,25%と、いずれも農家で育った方がはるかにアレルギーの罹患率が低い。ただ、肺機能検査で見ると3者に大きな差はない。
アレルギー全体のリスクをオッズ比として計算して国別に調べても、都会と比べ農家暮らしはほとんどの国で明確に低い。
以上の結果から、農家で育つことは間違いなくアレルギーを防止することが結論される。おそらく、これは以前紹介した指しゃぶりはアトピーを防ぐことを示した研究に近い結果だと言える(
http://aasj.jp/news/watch/5506)。
原因として、農家暮らしの方が早くからアレルゲンに暴露されるからと考えられるが、新生児期に皮膚のバリアーが壊れると、抗原が入ってアトピーになりやすいことも知られている。したがって、皮膚からではなく、消化管を通してどれほど多くのアレルゲンを経験できるかが、アトピーを防ぐ鍵になる様だ。さらに詳しい検査により、原因を特定して欲しいと思う。
2016年9月28日
昨日Jaenisch研から発表された部位特異的DNAメチル化を操作する方法を紹介した。後で雑誌を眺めていたら、我が国からも群馬大学のグループがNature Biotechnologyに、様々な酵素を特定の部位に送り込むため開発されたTagをつけたCas9を用いて、Tet1をリクルートすると部位特異的脱メチル化が誘導できることを報告していた。発生学者に夢を持たせるという点では、まだまだJaenischが一枚も二枚も上だが、負けずに頑張ってほしいと期待する。
しかし部位特異的にDNAメチル化を操作するだけでは、完全なエピジェネティック操作とは言えない。クロマチンのもう一つの構成成分ヒストン修飾も自由に操作する方法が必要になる。これができると、核移植や山中因子によるリプログラミングも、試験管内での分化誘導=プログラミングも、極端に言えば必要なくなる。要するに目的の細胞と同じクロマチン構造を再現すればいい。このための小さな一歩が、今日紹介するイタリアサン・ラファエロ大学からの論文だ。タイトルは「Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing (ヒットエンドラン型エピジェネティック編集により内在遺伝子の発現を世代を超えて抑制する)」だ。
この研究の目的は単純で、エピジェネティック操作により、発現遺伝子を不活化する方法の開発を目指している。
最初からCas9やTALEの代わりに、エピジェネティック操作に使う分子をリクルートできるようにした遺伝子領域とGFP遺伝子をセットにした遺伝子カセットを挿入した細胞を準備し、このGFP分子の発現を不活化するために必要な分子を探索している。
まずゲノムに飛び込んだレトロウイルスのプロモーターを不活化するメカニズムを参考にDNAメチル化酵素Dnmt3aとヒストンをK4メチル型からK9メチル型に書き換える引き金になるKRAB分子を使って、発現抑制を調べている。KRABをリクルートするとすぐに遺伝子発現を抑制できるが長続きしない。一方Dnmt3aだけでは遺伝子抑制に100日以上時間がかかる。このメカニズムは面白いのだが、この研究では深入りせず、両方の分子を短い時間だけ同時にリクルートする実験を行い、見事に永続的に遺伝子を不活化することに成功している。
ただ、この方法で不活化できるのは一部のゲノム領域にとどまるので、次にどの部位でも不活化する方法の開発を目指しこの二つの分子と組み合わせる分子を探索している。幾つかの候補分子を調べた結果、Dnmt3aとの相互作用を通してその活性を高め、さらにヒストン脱アセチル化酵素とも相互作用するDnmt3Lを組み合わせると、ほとんどの遺伝子領域を不活化できることを示している。
次にこの結果をモデル遺伝子ではなく、細胞に内在する遺伝子で確かめるため、Cas9やTALEを用いて3種類の分子を不活化したい遺伝子領域にリクルートし、一時的に3種の分子が標的部位に集まることで、高い発現を示すほとんどの遺伝子の発現を抑制できることを示している。
不活化部位のヒストンやDNAを調べると、H3K4me3型から H3K9me3型にヒストン標識が変化するとともに、転写開始部位のDNAがほぼ完璧にメチル化しており、クロマチン構造がオフ型に書き換わったことを確認している。
最後にこうして変換したクロマチン構造は、外界からの刺激によっても安定に維持されることも示している。
以上が主な結果だが、この研究のとりあえずの標的は、エピジェネティック編集による、遺伝子自体は変化させない新しい治療法開発だろう。MECP2重複症のように余分に遺伝子が発現している場合、かなり有望な方法に思える。
しかしよく読むと、この論文は、これまでゲノム操作とエピゲノム解読を組み合わせて行ってきたエピジェネティック機構の研究分野に、ヒストンも含めたエピジェネティック標識の操作を持ち込んだという点で、新しい方向性を示す転換点になっていることがわかる。まだまだ、細胞の持つ力を借りてのエピジェネティック編集と言わざるを得ないが、今後急速にエピゲノムの人為操作部分が高まるだろう。
最初に述べたように、エピジェネティック研究が変わるということは発生学が変わるということだ。
そして、エピジェネティック編集も疾患治療分野の期待を集めること間違いない。
最後にもう一度強調すると、CRISPR/CasもTALEも決して「遺伝子」編集にとどまらないことを銘記すべきだろう。