2022年7月18日
以前、カロリーのない人工甘味料と、カロリーを持つショ糖の違いを感じて、最終的にショ糖を選ぶ脳回路が存在することを示した論文を紹介した(https://aasj.jp/news/watch/18825)。このように、味や臭いだけではわからない栄養を直に感じるシステムは、野生動物がどの食物を選ぶのかにとって極めて重要なはずだ。
同じように、水はもっと重要かもしれない。液体だからいいというわけではない。高張液では脱水は改善されない。今日紹介するカリフォルニア大学サンディエゴ校からの論文は、血中の脱水状態をモニターして、どの液体を飲めばいいのか選ぶための脳回路を明らかにした研究で、7月13日 Nature にオンライン掲載された。
食物の摂取や水の摂取などの行動をドーパミン神経が支配していることは、一般の人にも広く知られている。この研究でも1日飲み水を与えなかったマウスに5分間自由に水を摂取させたときの、腹側被蓋野(VTA)ドーパミン神経(DA)の活動をまず調べている。これまで報告されているように、水を大喜びで飲んでいるときに興奮する DA の興奮が記録されるが、これ以外に水を飲んだ10分後ぐらいに興奮する DA を突き止め、これが水を腹で感じるときの脳回路ではと当たりをつけた。
このことは塩水を飲ますとわかる。喉が渇いて水にありついたという最初の興奮は塩水でも見られるが、10分後の興奮は見られない。また、飲むという行動をスキップして水を直接胃に入れたり、腹腔注射でも後の興奮は見られる。一方、高張液を注入した場合は、興奮が逆に抑制される。また、これまで栄養をとることで興奮する DA とは別の集団であることも確認している。以上のことから、摂食行動を支配する感覚は極めて複雑で、今回特定された DA は、喉の渇きではなく、血液の水バランスを感じる回路であると結論している。
DA はご褒美回路と言われたりするエフェクター回路で、行動を直接支配する。この興奮が、脳のどの領域で働いているのかを次に調べ、扁桃体基底核外側部(BLA)が、満足感を示す舌なめずりとともに興奮することを特定している。即ち、VTA-DA から BLA 回路を通じて、より身体な脱水感覚の正常化が満足感に変化している。
次に、VTA-DA 神経興奮に関わる上流の回路を検討する目的で、摂食行動に関わることが知られている視床下部外側部(LH)の GABA ニューロン(GA)との結合に着目して、水バランスの変化による興奮を調べると、水を注入後に LH-GA が興奮することを発見する。ただ、LH-GAの興奮を誘導する実際のセンサーについては、脱水により活性化される脳球下器官が関わっていることを確認しているが、完全には特定できていない。どのように水バランスという微妙な調節なので、複雑なセンサー群があるのかもしれない。
以上、SFO、LH-GA、VTA-DA、そして BLA と水バランスを満足に変換する回路を特定した後、この回路が本当にご褒美による行動変容につながるかを、異なる臭いを嗅がした後、胃に直接水と高張液を投与して、条件化する実験を行い、最終的にマウスが水が注入される方の臭いを選ぶことを確認している。
以上が結果で、喉の渇きを一瞬癒やすことで終わらず、しっかりその後で効果の評価をして、満足中枢反応をより安全なものへと変える複雑なメカニズムの一端がよく理解できた。最近確かに暑くなってきたことも一因とは思うが、熱中症が昔より多発しているような気もする。このような無意識の身体感覚を理解することで、新しい対処法が可能になればと考える。
2022年7月17日
腸管上皮は、クリプトと呼ばれる組織内構造から管腔に突き出した絨毛まで、一続きの幹細胞システムを形成しており、古くからアクティブな研究対象になっている。この領域の研究の質を一変させたのが Hans Cleavers らによる幹細胞マーカー Lgr5 の発見で、この遺伝子を基板に様々な遺伝子操作を加えることで、腸管幹細胞のダイナミックスとともに、発ガン過程も詳しく理解することが出来るようになった。また、ここから現在慶応大学の佐藤さんたちは、試験管内のオルガノイド培養を完成させた。
この成果を Cleavers らは一本のビデオにまとめよくミーティングで使っていた。今でもよく覚えているが、クリプトにある幹細胞が移動しながら Lgr5 を失って分化したり、クリプトでパネット細胞に分化したり、さらには上部に移動し始めた幹細胞がパネット細胞を超えて移動したりと、まさに見てきたようにモデルが作られていたが、実際には断片を組み合わせて考えられたものだ。
今日紹介するオランダ ガンセンターからの論文は、Cleavers の名前こそ載っていないものの、今やオランダの伝統となった Lgr5 細胞を中心にした幹細胞研究なのだが、Lgr5を標識する研究手法に生きたマウスの腸管のクリプト部位を直接顕微鏡で観察するという離れ業を組み合わせて、小腸と大腸での幹細胞ダイナミックスの違いを見事に示した研究で、7月13日 Nature にオンライン掲載された。タイトルは「Retrograde movements determine effective stem cell numbers in the intestine(細胞の逆行が腸管幹細胞の有効数を決めている)」だ。
腸管の Lgr5 陽性細胞を、生後タモキシフェン注射で蛍光ラベルして生きたマウスでその細胞を追跡できるようにしたことがこの研究の全てだと思う。光を発する一つのクリプトを他のクリプトから区別して観察を続けることは決して簡単でないはずだ。ただ、それをやり遂げたとき、新しい発見があった。
まず、小腸と大腸のクリプトには、ほぼ同適度の数の Lgr5 陽性細胞が存在し、それぞれがオルガノイド形成能をほぼ同等に持っており、機能的にもほぼ同じと考えられるが、大腸と小腸では幹細胞の遺伝子発現は大きく異なっており、これは大腸ほど Lgr5 陽性細胞が中心から離れるほど、幹細胞性が失われること、逆に小腸ではクリプトのボーダーを超えなければ、Lgr5 細胞はほぼ同じ幹細胞性を持っていることに起因することを確認している。
次に、様々な場所の Lgr5 陽性細胞をラベル実験で、いくつぐらいの機能的幹細胞が1つのクリプトに維持できているかを調べると、小腸では大腸より多くの幹細胞が維持されていることを発見している。即ち、大腸では古典的な幹細胞システムの図に近く、中心から離れるに従ってすぐに幹細胞性を失うのだが、小腸では中心から離れても、また幹細胞として復活し、結果多くの幹細胞を維持している可能性が示唆された。
この精細な観察を説明できるよう、幹細胞モデルを形成すると、いったん中央から離れた幹細胞がもう一度中央へ戻るという、細胞の逆行現象がないと説明できないことが示唆された。そこで、今度は低い量のタモキシフェンで Lgr5 細胞が、ランダムに異なる蛍光マーカーを発現するように細工したマウスを用いて、細胞の逆行が観察できるか調べると、モデル通り小腸で10%近い細胞が、クリプトのボーダーまで来ても、また中心に戻る逆行が認められること、一方、大腸ではこの逆行が全く見られないことを発見した。
このボーダーからの逆行を誘導するシグナルを探し、最終的にボーダーにあるパネット細胞が発現する Wnt により細胞の遊走活性が上昇することが、逆行のシグナルで、パネット細胞が存在しない大腸では、当然この逆行が存在しないことになる。そして、傷害後の再生では、多くの幹細胞が維持できている方が、高い再生能力を示すことも示している。
以上が結果で、パネット細胞の Wnt により、一度クリプトから離れかけた幹細胞も、もう一度元に戻って他の幹細胞と場所争いをするという競争を維持することで、様々な状況に即応できる幹細胞システムが形成できるという面白いシナリオだ。著者らがいうように、この競争により常に幹細胞が置き換わることが、小腸にはガンがほとんど起こらない原因かもしれない。
骨髄細胞のクローン増殖が老化を促進していることがわかってきたが、幹細胞システム内で競争を維持する仕組みの重要性を実際に目で見えるようにしたという点でもこの研究は面白い。百聞は一見にしかず。
2022年7月16日
2014年5月、老化に伴ってY染色体が欠損(mLOY)した血液の割合が増加し、この増加率に反比例して寿命が短くなることを示すスウェーデン・ウプサラ大学からの論文を紹介した(https://aasj.jp/news/watch/1506)。 男性にとっては恐ろしい話なのだが、その後喫煙によりmLOY 確率が高まること、心血管障害、ガン、アルツハイマー病の発症率も、mLOY の頻度に比例することなどが報告されている。
今日紹介するバージニア大学からの論文は、mLOY のマウスモデルを作成し、これまで報告されてきたmLOYの臨床例を説明しようとした面白い研究で、7月15日号 Science に掲載されている。タイトルは「Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality(造血細胞のY染色体欠損は心臓の線維化と心不全死を誘導する)」だ。
この研究の目的は、mLOY による死亡率の上昇をモデルマウスで明らかにすることで、そのために Y染色体中心体に存在する繰り返し配列を CRISPR/Cas9 で切断することで、Y染色体全体が欠損した血液幹細胞を作ることに成功している。
こうして作成したmLOY血液幹細胞を放射線照射マウスに注射し、老化するのを待って研究に使うという長丁場の実験だ。ただ、その前にUKバイオバンクのデータを用いて、mLOYと特に心血管系の疾患との相関を調べ、mLOY の増加に応じて心血管系の疾患が増えること、なかでも高血圧性心疾患、心不全、うっ血性心不全、動脈瘤などが mLOY と相関することを確認している。
さて、9割以上の血液が mLOY を持つマウスでは、期待通り老化が促進し、心臓だけでなく、肺や腎臓の線維化が進むことを示し、老化や線維化の原因が、移植した血液の問題であることを確認している。
さらに、大動脈を狭窄させて心臓負荷をかけると、mLOY を持つ血液を移植されたマウスでは、心不全の程度が高まり、組織学的には線維芽細胞の数が特に上昇していることを確認する。
次に single cell RNA sequencing を行い、mLOYに起因する異常の細胞レベル、分子レベルのメカニズム解析を行い、細胞では骨髄で作られ循環しているマクロファージが、心臓に生まれたときから存在しているマクロファージを置き換える能力が mLOY血液では高まっていること、そして一般的な炎症に関わる IL1β ではなく、このマクロファージが分泌する TGFβ により線維化が誘導されることが、血液のmLOY に起因する心臓線維化及び心不全の原因であることを突き止めている。
最後に、循環から心臓組織へのマクロファージの浸潤や、TGFβ の作用を抗体を用いてブロックすることで、血液 mLOY に起因する病理を抑えることが出来ることを示している。
これまで、mLOY は一種のロシアンルーレットみたいなものとして諦めていたが、この論文を読んでまだまだ対応のしようがある状態であることがわかった。また、マウスモデルの研究から、mLOY が起こっても、血液自体の増殖には影響がないことから、今問題になる血液幹細胞のクローン増殖とも異なることもよく理解できた。
2022年7月15日
2015年4月、「膵臓ガンの早期診断は可能か」と題して、スウェーデン・カロリンスカ大学で行われた、遺伝的ハイリスクグループについて定期検診による膵臓ガン発見スクリーニングの試みを紹介した(https://aasj.jp/news/watch/3240)。ただこの時は、対象人数が少ないことなどから、確かにステージⅠのガンを発見できるようだが、今後の大規模調査が必要だと結論しておいた。
同じような試みは各国で行われているようで、今日紹介するジョンズホプキンス大学を中心とした多施設共同研究の論文は、やはり遺伝的ハイリスクグループでも、1年に1回の検診で進行前の膵臓ガンを見つけられることを明らかにした研究で、6月15日 Journal of Clinical Oncology にオンライン掲載された。タイトルは「The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival(膵臓ガン早期発見のための多施設研究;定期検診のステージと生存に対するインパクト)」だ。
このグループは早期診断のための臨床治験を大規模に行っており、この論文では、まず、その中のCAPS5と名付けられた2014年から2021年まで追跡しているコホートについての中間報告になっている。
早期診断のための検査は、内視鏡による超音波検査か、MRCPと呼ばれる MRI を用いて胆管膵管を調べる方法が用いられ、他の検査は診断基準から外されている。
対象は、BRCA1 など何らかの膵臓ガンリスク遺伝子が有る、近親者に膵臓ガンがいる、そして既に他のガンにかかった、などの条件を満たす人たちを1年に1回検査し、膵臓ガンを発症した人をフォローアップしている。
ハイリスクでも、ガンの発見率は1年で160人に1人ぐらいなので、驚くほど高いというわけではない。この研究で最も重要な点は、定期検診により発見された9人の膵臓ガン患者さんのうち、7人がステージⅠで、さらにもう一人はステージ IIA で、手術が行われた点だ。一方、一人はステージⅢで発見されているので、1年(実際には6−14ヶ月の間隔)では、完全というわけではない。
膵臓ガン発見後、現在までの時間経過はそれぞれ違うので、この結果だけからは正確な統計はとれないが、推計学的計算を行っているが、生存期間は3.84年と、平均の1.5年を大きく上回っている。いずれにせよ、印象としてはかなり良い。
このような検査で問題になるのは、過剰診断だ。この方法で膵管の嚢胞が発見されると、やはり念のためと手術が勧められる。このコホートでは、8例が嚢胞と診断され、そのうち3例だけで前がん状態が発見されている。この3例は全員生存しており、経過観察中だ。
これに加えて、これまでの CAPS1-CAPS4 も合わせた結果も示されている。対象は同じで遺伝子診断を含むハイリスクグループで、結果は驚くべきものだ。一般に膵臓ガンの診断時、85%がステージⅣで、生存期間が平均1.5年だが、定期検診で見つかった膵臓ガンの57%がステージⅠで、平均生存期間は9.8年で、素晴らしい結果だ。一方手術して悪性所見がなかったケースは13例あるが、基本的に全員生存している。
以上が結果で、内視鏡超音波かMRCPによる検査は、間違いなく膵臓ガンの早期発見を保証することが示されており、少なくとも遺伝リスクのある人は、考えて損はないように思う。
2022年7月14日
組織再生をリンパ球が助ける可能性はこれまでも指摘されてきた。かなり古くは、γδ細胞が欠損すると、腸の絨毛の長さが短くなることが報告されていたし、今では腸管や皮膚の修復に機能しているということは、広く認められている。
今日紹介するニューヨーク大学からの論文は、皮膚の損傷修復時の γδT細胞が分泌する IL-17 が、皮膚上皮の低酸素応答システムの発現を維持することに働いているという重要な発見で、7月8日号 Science に掲載された。タイトルは「Interleukin-17 governs hypoxic adaptation of injured epithelium(インターロイキン17が傷害された上皮の低酸素適応を調節する)」だ。
まず損傷治癒の初期過程で傷口に浸潤するT細胞を調べ、傷口には様々なT細胞が浸潤していることを確認した上で、中でも IL-17 産生細胞の発生に必須の RORγ遺伝子を発現した γδT細胞が急速に上昇することを発見する。
そこで RORγ遺伝子を蛍光マーカーで置き換えたマウスを用いて修復過程を調べると、治りが50%遅くなること、すなわち修復に RORγ陽性細胞が必須であることを明らかにする。
これがわかると、後は順々にその機能を追求していけば良い。RORγが調節する IL-17 が修復促進に関わることを、ノックアウトマウスで確認した後、上皮細胞での IL-17シグナル伝達経路を追跡している。
まず、上皮の修復に必須の低酸素応答システムHIF1の発現維持に、IL17が必須であることを明らかにしている。すなわち、急性の低酸素で HIF1 は誘導されるが、それが長期間維持されるためには IL-17 が必須で、これが修復に際しての RORγ陽性γδT細胞の主要な役割になる。
そして、主に阻害剤を用いたシグナル研究で、IL-17が ERK 及び AKT のリン酸化を介して mTOR を活性化するという、まさに代謝の核となるシグナル経路を介して HIF1 の転写及び翻訳を維持し続けていることを明らかにしている。
詳しいことはほとんど省略したが、この結果は重要で、大きな皮膚損傷での修復を、IL-17が促進できることを意味している。このサイトカイン自体は炎症誘導など様々な問題を引き起こす可能性はあるが、培養に使うことも含めて、様々な可能性が生まれたと思う。
また、これまで HIF1 が誘導されると、低酸素による反応として片付けていた過程も、総合的に見ることの重要性を示している。特に低酸素環境に対する、急性の反応と、慢性の反応は区別してかかることの重要性もよくわかった。
IL17 というと悪いイメージしかないが、新たな組織形成は全て炎症を元にプランされていると思うと、納得する。
2022年7月13日
今でこそ本庶先生はがんのチェックポイント治療の開発者として奉られているが、私が現役の頃は、なんと言っても免疫グロブリンクラススイッチ研究で有名で、最終的にクラススイッチに関わる分子 AID の発見と遺伝子クローニングに結実している。AID の機能を証明した論文が出たとき、本庶先生は医学部長だったが、教授会で「そろそろ上がりですね」と言って、「馬鹿な」と一括された。そのときは、PD1 という第二章があるとは想像だにしなかった。
さて、このAIDはクラススイッチだけでなく、リンパ節の胚中心と呼ばれる場所で、抗体遺伝子にさらなる突然変異を誘導して、より抗原にフィットした抗体生成に大きな働きをしている。ただ特定の領域に限られるとは言え、ゲノムに突然変異を積極的に導入する分子なので、AID が発現する細胞では腫瘍発生のリスクが高い。
今日紹介するコロンビア大学からの論文は、クラススイッチと変異が進行中のB細胞に由来するびまん性大細胞型リンパ腫(DLBL)でのスーパーエンハンサーの解析から、AIDによるエンハンサー部位の変異により腫瘍が発生していることを明確に示した研究で7月6日 Nature にオンライン出版された。タイトルは「Super-enhancer hypermutation alters oncogene expression in B cell lymphoma(スーパーエンハンサーの高頻度変異はガン遺伝子の発現を変化してB細胞腫瘍を誘導する)」だ。
これまでエンハンサーが集まって強い転写が起こるスーパーエンハンサー(SE)が発ガンにも関わることは何度も述べてきたが、では SE 自体の変異がガンで起こって、SE が形成されるのかという問題については、あまり研究が進んでいない。というのも、エンハンサーの変異を機能的に調べるのは簡単でない。
ただ、先にも述べたように DLBL は AID により変異が起こりやすいこと、また抗体遺伝子発現のための SE が形成されていることから、SE 自体の変異を調べる目的には最もかなった対象だと納得する。
アセチル化ヒストンの免疫沈降法で、SE と一般のエンハンサー(NE)を特定し、特定された SE 領域で変異を検索すると、DLBL 細胞株、実際の白血病細胞を問わず、SE 領域で突然変異が高いことがわかった。
抗体遺伝子の変異率の高い胚中心由来と考えられるリンパ腫のみで、SE の変異頻度上昇が認められることから、AID が SE の変異に関わると考えられるが、予想通り変異の種類を見ると、AID=deaminase活性による変異と断定できるの。以上のことから、DLBL では AID が上昇しており、SE として集まった領域を標的に変異が蓄積しやすく、これがリンパ腫発生に関わること想像される。
後は、SE に起こった変異が白血病発生に関わるかを調べる実験が行われ、
- リンパ腫での転座が認められる BCL6 では、転座がなくても遺伝子内のイントロンの SE に高率に遺伝子変異が認められ、通常はこの部位にリンパ球の分化を誘導する BLIMP1 が結合しているが、変異によりこの結合が消失し、分化が止まって増殖が起こると考えられる。同じ変異を持つ細胞株をの変異部位を遺伝子編集で正常化すると、腫瘍増殖がなくなるので、BLIMP1 結合が消失して、BCL6 の転写が高まることが白血病化に関わると考えられる。
- 同じように、SE により転写が上昇する BCL2 や CCR4 の SE を調べると、本来グルココルチコイド受容体が結合しており、転写が抑えられているのが、変異によりこの結合が壊れ、腫瘍発生に関わる。事実、SE 領域の変異を正常化すると、細胞の増殖は低下する。
以上、SE の中に、正常の分化では発現を抑える働きを持つ領域が変異により SE としてそれぞれの遺伝子の高発現に関わることで、白血病誘導に関わることを示した力作だと思う。他の腫瘍でも SE の関与が示されていることから、同じ手法で解析することで、難関だったノンコーディング領域の変異の機能がさらに明らかになるのではと期待している。
2022年7月12日
チェックポイント治療は、ガン治療を変えたといっても過言でないが、分子標的治療などとは異なり、ガンの現場で何が起こっているのか正確に捉えることは難しい。というのも、モニターできる免疫システムがほとんど末梢血に限定されていた。
これを大きく変えたのが、チェックポイント治療(ICT)を手術の前に行うガンのネオアジュバント治療だ。これにより、チェックポイント治療のガン組織での効果を、切除した標本ではっきりと調べることが出来る。
今日紹介するハーバード大学と中国の Guangzhou Laboratory からの論文は、頭頸部扁平上皮ガンで行われるネオアジュバント治療の機会を捕まえて、PD-1 抗体による治療、あるいは PD-1 抗体に CTLA4 抗体を加えた治療のガン組織及び末梢血細胞への効果を抗原受容体レベルにまで調べた、よくここまでと思える力作で、7月7日 Cell にオンライン掲載された。タイトルは「Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy(組織常在型と循環型T細胞は手術前のガン免疫療法に反応する)」だ。
研究では PD−1 抗体治療14例、PD-1+CTLA4 抗体治療15例の患者さんについて、一部の患者さんでは治療前の確定診断のバイオプシー、治療後に行われる手術切除組織、そして手術までの間の末梢血、術後の末梢血を採取、ここに存在する血液細胞、特にT細胞について、主に single cell RNA sequencing を用いて調べている。
まず知りたいのが、ICT により、ガン抗原特異的T細胞が増殖しているのかだが、上皮に対する強い接着力を持つインテグリンαEを発現したT細胞が強く増殖している。またこのポピュレーションは、ガンを殺す様々な分子を発現し、さらに他の免疫細胞を惹きつけるケモカインを発現している。
抗原受容体 (TcR) を調べると、まさにこの集団で同じ TcR が繰り返し認められるクローン増殖が起こっている。面白いことに、クローン増殖を起こしたT細胞の半分は元々ガン組織に存在し、そこで増殖したT細胞クローンだが、それまでガン組織には存在せず、末梢組織からリクルートされてきた TcR を持つクローンも新たに出現する。
これらのガン特異的 TcR は、様々なガン抗原を認識しており、中にはこれまで頭頸部ガンの抗原として知られていなかったものも見つかる(何万というペプチドを用いた大変な仕事の結果、TcR に反応するガン抗原を見つけているので、徹底性に感心する)。
T細胞の大きな変化に合わせて、白血球や樹状細胞なども再編成される。
ガン組織でクローン増殖しているT細胞は末梢血にも発見され、治療開始後2週間がピークで、それ以降は末梢には現れない。
増加している細胞の遺伝子発現から、ICT はこれまで言われていたように抗原刺激による疲弊を抑えるより、細胞の増殖を助けていると考えた方がいい。
以上が主な結論だが、ICTを免疫が低下しない時期に行う重要性がよくわかる研究だ。他のガンでは異なる可能性もあるが、臨床と基礎の協力が必要な分野が拡大していることを感じる。
2022年7月11日
自己と非自己を区別し、自己抗原に対する免疫反応を抑制する免疫寛容は、実験免疫学が始まった頃から多くの研究者を惹きつけてきた。そして1953年、Medawarらにより免疫寛容を人工的に誘導できることが示されることで科学的研究が始まった。今週13日水曜日の夕方5時から、胸腺内免疫寛容の仕組みについて明らかにしたDian Mathis論文をジャーナルクラブで取り上げるが、そのとき彼女の論文だけでなく、1953年 Medawar 論文からの免疫寛容研究史についても触れるつもりなので、是非期待して欲しい(https://www.youtube.com/watch?v=pitYM7YqUnY&list=PLxfkSUAJXxnF2xJ2DlTVYlLMcrkn8X6Fz)。
免疫寛容の理解が難しいのは、クローンレベルの選択によるトレランスから、制御性T細胞(Treg)による反応制御とともに、いわゆるアネルギーと呼ばれる、細胞はいるのに麻痺しているような状態まで存在することだ。特に食物アレルギーを抑えるため、抗原を食品として摂取する方法では、アネルギーも加わり解析が難しい。
.今日紹介するミネソタ大学医学部からの論文は、抗原を摂取して誘導する食物抗原への寛容誘導過程を、ストレートな方法で調べた研究で、何故今まで同じような研究がなかったのかと思う重要な研究で、7月6日Natureにオンライン掲載された。タイトルは「Immune tolerance of food is mediated by layers of CD4 + T cell dysfunction(食物に対する免疫寛容はCD4陽性T細胞の機能不全により媒介されている)」だ。
この研究では小麦アレルギーの抗原として知られるグリアジン由来のペプチドをはじめ、様々な抗原ペプチドを直接摂取させたときに、腸内に集まる抗原特異的免疫細胞を調べている。これまでの研究で、アジュバントなしにペプチドを投与すると、寛容が起こることが知られていた。マウスは、通常のSPFを用いている。
これまで、こうして誘導される寛容の主役はTregであることが知られていたが、この研究ではMHCとペプチドが組み合わさったテトラマー抗原への結合を指標に、抗原に反応するT細胞だけに着目することで、Tregとともに、どの系列と明確に特定できないヘルパーT細胞(Th-lin(-) )が増えていることを発見している。
後は、Th-lin(-)とは何かについて詳しく調べており、アジュバントなしに直接抗原ペプチドに出会うことで、IL2 が環境にあるとTregへの文化が進み、一方 IL-2 の濃度が低いとあまり増殖せず Th-lin(-) へと分化することを明らかにする。
一方、Th-lin(-) はペプチドとともにコレラトキシンをアジュバントにして投与することで、ほとんど消失し、Tfh や Th1/17 が増加することから、反応が出来なくなったアネルギー細胞で、分化能としてはTreg にも Th1 にも分化出来るナイーブ細胞に近いと結論している。
問題は、アネルギー細胞が積極的に免疫寛容維持に関われるかだが、いったんアネルギー状態に陥ると、アジュバントを加えて新たに免疫を誘導しようとしても一定期間腸内での Th1/17細胞のリクルートが抑えられることから、アネルギー細胞もある程度の効果があるのではと考えている。
以上まとめると、胸腺と違って末梢で抗原に対する寛容が誘導される場合は、まず第一に IL-2 の存在する状況で誘導される Treg が積極トレランスを担当し、いち早く Th1 へ分化しにくいアネルギー状態のナイーブ細胞を用意することで、抗原特異的に Th1 への漏れを防ぎながら、Treg の抑制効果を高めるという複雑な経路が存在することを示している。
とはいえ、印象としては複雑すぎる。これに細菌叢が絡んでくることを考えると、食物アレルギーに対する寛容誘導も簡単ではなさそうだ。
2022年7月10日
Single cell RNA sequencing によって様々な細胞が解析されるにつれて、一つの細胞タイプがますます詳しく分類されるようになっている。その典型が線維芽細胞だろう。形態的に分類がほとんど出来なかった線維芽細胞は、今や10種類を超すサブタイプに分類されるようになった。
神経系細胞では元々多様性が高いことが知られ、神経の興奮の微調節に関わる介在神経が面白い。元々分子マーカーで5種類に分けられていたが、scRNAseq により今ではさらに数多くのサブタイプに分けられている。ただ、それぞれのサブタイプの神経生理学的な機能を調べるのは簡単ではない。これには細胞が生きているうちに生理機能を調べ、その後細胞の遺伝子発現なりを調べる必要があり、一つの細胞を2回全く異なる方法で調べる必要がある。これまで Patch-seq と呼ばれる方法、すなわちパッチクランプで細胞を調べ、そのままその細胞の核を取り出し遺伝子発現を調べる方法が用いられていた。ただ、これでは特定の領域の細胞活動を生きた動物で調べる目的にはほど遠い。
今日紹介する University College London からの論文は、バーコードを用いた72遺伝子の発現を組織的に調べる方法と、Ca センサーによる神経活動の長期記録を組みあわせ、介在神経の遺伝子発現と機能を相関させた力作中の力作で7月6日 Nature にオンライン掲載された。タイトルは「A transcriptomic axis predicts state modulation of cortical interneurons(遺伝子発現のパターンにより皮質の介在神経の状態を予測できる)」だ。
この研究では自由に動き回るマウスで、様々な状態での視覚に関わる領域の活動を Ca センサーで連続的に記録し、その後その領域を取り出し、そこに存在する介在神経をバーコード化された72種類の遺伝子プローブで調べ、個々の介在神経の遺伝子発現と、神経興奮の記録を相関させている。
簡単に書いてしまったが、これが出来るということがすごい。まず興奮の記録と、遺伝子発現の記録を一つの立体組織上に再構成する必要がある。これを実現するだけでも膨大な情報処理が必要になる。
この結果、例えば動いているときと、ジッとしているときの視覚野で、どのタイプの介在神経が活動しているかを明らかに出来る。詳細を省いて結果を箇条書きにすると、
- これまで5種類に分けられていた介在神経を40種類近くのサブタイプに分けることが出来る。
- 異なる状況での神経興奮と、サブタイプを相関させると、遺伝子発現の違いにより、興奮する状況が異なる。
- ただ、遺伝子発現の違いによる機能的変化は連続的で、介在神経機能が連続的になるようプランされている。
- また、様々なパターンによる異なる視覚刺激でも、それぞれのサブタイプが異なる反応を示す。
- 詳しく探索すると、この機能的変化の違いを、例えば GABA 合成レベルの違いや、アセチルコリン受容体発現の違いとさらに相関させることが出来る。
他にもまだまだいろんなメッセージが詰め込まれているが、このぐらいでいいだろう。scRNAseq の結果を、組織に展開し直し、それを機能と相関させることで、様々な情報を集めて興奮を調節している介在神経の機能の多様性の意味をようやく理解できるときが来たように感じる。
介在神経は精神疾患を理解するときの鍵であることを思うと、大きな期待を持って見ていきたい。
2022年7月9日
私はながら族で、現役を退いてからは、大体Apple musicを通して音楽を聴きながら仕事をしている。このサイトでは、様々な状況に適した音楽セットを提供しており、例えば朝起きて気分を高めたいときや、静かに考えたいときなど、多くのセットが用意されている。そして、Pain relief、痛み止め向きの音楽セットも用意されているが、驚くことにただ静かなクラッシック音楽を集めたものではなく、単純な音節が静かに繰り返す、このために作られたと思われる音楽だ。
前置きからわかるように、今日紹介したい中国合肥の中国科学技術大学からの論文は、人間ではなくネズミでも音を聞かすと痛みが和らぐかについて生理学的に調べた研究で、7月8日号の Science に掲載された。タイトルは「Sound induces analgesia through corticothalamic circuits(音楽は皮質視床回路を介して鎮痛効果を誘導する)」だ。
音楽を聴くと痛みが和らぐというのは、なんとなく納得していたが、結局は気が散るからだと理解していた。この研究ではマウスに様々な音を聞かせて、痛み刺激の閾値変化をまず徹底的に調べている。
まず、50dbぐらいの音圧で音を聞かせると、痛みが和らぐのだが、人間にとって気持ちのいい音楽だろうと、ホワイトノイズだろうと全く同じ効果がある。さらに、60dbという強い音圧では効果が全くなくなる。
さらに面白いことに、環境のノイズとホワイトノイズの音圧の違いが5dbでは痛みが和らぐが、それ以上だと全く効果がない。これらの結果をまとめると、確かに音に注意が向くことで痛みが和らぐが、少なくともネズミでは、環境と異なる音であれば何でもいい。そして、弱い音が周りから区別出来るときがその効果が強いということになる。野生の状況を考えると、障害を受けても次に襲ってくる敵の気配に注意を向ける必要があるときに、痛みを和らげる効果があることになる。
おそらくこのような行動解析がこの研究のハイライトで、これに関わる回路研究については、驚くほど道具がそろっており、ここでも聴覚回路から順番に痛みを和らげる回路を特定している。
まず痛みに関わる視床と聴覚野とのつながりを検索し、視床のVPとPO領域に神経投射が存在すること、そしてこの回路の自発的興奮が、行動と同じで、弱い音に注意を向けたとき低下するが、強い音では変化のないことを発見する。即ち、このサーキットでの活動が痛みが和らぐ現象表象している。
そして、聴覚野からシナプス結合を受けている、視床側のVPおよびPOの興奮を抑制、あるいは活性化する実験を行い、最終的にPOが後肢、VPが前肢の感覚野を支配して痛みを和らげていることを明らかにしている。
結果は以上で、回路の研究も重要だが、特に目新しさはない。ネズミを使うことで、高次の認識ではなく、単純な音の認識だけで痛みを和らげる仕組みを私たちが備えていることが面白い。これを知った上で聞き直してみると「Pain healing」と名付けられた音楽は、よく出来ていると思う。