核酸を媒体とするコードとアミノ酸の対応が生まれて現在の形の生命が誕生する以前、RNAがコードであり機能分子でもあるというRNA世界が存在していたことは、私にとっては納得できるシナリオだ。そんな状況が今でも垣間見られる様々な現象が存在するが、タンパク質への翻訳過程で、RNAでできたリボゾームとmRNAが相互作用している。
今日紹介するスクリップス研究所からの論文はこのRNA同士の相互作用の一部は、個別のmRNAの立体構造に依存しており、これを阻害することで特定の(この場合αシヌクレイン)の翻訳を抑えることができることを示した研究で1月21日号発行の米国アカデミー紀要に掲載された。タイトルは「Translation of the intrinsically disordered protein α-synuclein is inhibited by a small molecule targeting its structured mRNA (αシヌクレインの異常翻訳をmRNAの立体構造を標的にした低分子化合物で阻害する)」だ。
不勉強でこの論文を読むまで全く知らなかったが、mRNAの中にはRNAの特異的立体構造を使ってリボゾームト結合し、これが翻訳の活性を調節できることがわかっているらしい。その一つがパーキンソン病やレビー小体型認知症で蓄積することが知られているαシヌクレインで、著者らによるとmRNAの5‘UTRに鉄イオン依存性の特徴的な構造を持っており、これを阻害することで翻訳の効率を低下させる可能性があることがわかっていた。重要なのは、このような構造は他のmRNAにはほとんど存在せず、αシヌクレインmRNAに特異的で、従ってこの分子を標的にした治療が可能になるというわけだ。
この研究ではαシヌクレイン5’UTRの構造解析から理論的に設計した化合物の中からsynucleozidという化合物を選び出し、これが細胞レベルでシヌクレインの合成を抑えられるか様々な実験を行なっている。はっきり言って、RNAを標的にする化合物が設計できるというのがこの研究のハイライトで、あとは詳細な細胞学、生化学的実験が続いている。
まずシヌクレイン合成中の細胞に転化して効果や特異性を調べると、期待通りほぼシヌクレイン特異的に25%程度の翻訳を抑制できている。ただ、フェリチンの翻訳も低下するが、これについては2次的影響と結論している。データベースの中から、同じような構造を持つmRNAを探索して、シヌクレイン以外には1種類のmRNAしか見つからないことを確認しており、これを標的にするとシヌクレインを標的にする薬剤の開発が可能になる。
生化学的にはアンチセンスオリゴを用いた結合性のマッピング検査というかなりプロフェッショナルな方法を用いてsynucleozidが結合する場所を特定している。さらにタンパク質の介在なしにmRNAと40Sリボゾームの直接の結合を阻害していることを示しているが、詳細はいいだろう。
要するに、翻訳という蛋白合成の基本過程も、特異的分子を標的とした治療の開発対象になるという驚きだ。もちろん抑制の程度は強くないが、薬に特異性があり、25%の抑制が可能なら十分魅力がある。ただ残念なのは、この研究で脳内へ到達できる分子の設計を行なっているが、これはうまくいかなかったことで、まだまだ実現は遠いと思う。
重要なのは、もし同じことが他の薬剤開発が難しいタンパク質についても言えるなら、翻訳が将来の分子治療の標的になることで、例えば分子特異的に蛋白分解酵素を作用させる低分子化合物とともに期待したい分野だと思った。