11月4日 ホモサピエンスのHLA多様性をNK細胞の活性の変化が決める(10月29日 Cell オンライン掲載論文)
AASJホームページ > 2024年 > 11月

11月4日 ホモサピエンスのHLA多様性をNK細胞の活性の変化が決める(10月29日 Cell オンライン掲載論文)

2024年11月4日
SNSシェア

T細胞は MHC に結合した抗原ペプチドを認識して活性化されるが、NK細胞のキラー活性の調節は複雑だ。私の理解の範囲で述べると、NK細胞は KIR と呼ばれる受容体を発現して標的を傷害する。ただこの KIR には抑制型と活性型が存在し、細胞内のシグナルが異なる。抑制型 KIR はクラスI  HLA を認識し、刺激を受けると活性を抑える。これが、HLA-I が発現している細胞が NK細胞から守られるメカニズムになる。一方、活性化型 KIR の多くはガンやウイルス感染細胞で起こる変化を捉えていると考えられる。それぞれの KIR は数種類存在するため、その認識は極めて複雑で、しかも抑制型と活性型のバランスで反応が決まるので、理解が難しい。

今日紹介する米国コロラド大学、オーストラリア・モナーシュ大学他いくつかの研究施設が共同で発表した論文は、この複雑な NK細胞のバランスが、場合によっては HLA の多様性を大きく変化させるという面白い論文だが、KIR の複雑性から、現象の背景についてはよく理解できなかった。タイトルは「An archaic HLA class I receptor allele diversifies natural killer cell-driven immunity in First Nations peoples of Oceania(旧人類から受け継いだ一つの HLA クラスI受容体が最初のオセアニア人の NK細胞による免疫を多様化させた)」だ。

この研究ではアボリジニとして知られるオーストラリア、パプア・ニューギニアの人々のゲノムデータから、MHC と抑制型 KIR の多様性について調べている。オセアニアの原住民は、ヨーロッパ人よりずっと早くアフリカから移動したホモサピエンスだが、HLA や抑制型 KIR 分子の多様性は、他の地域のホモサピエンスと特に変わらない。

ところが、KIR3DL1 の一つのハプロタイプ KIR3DL1*114 は、他の民族と異なり、オセアニア人に広く発現されていること、そしてアフリカ人には全く存在しないことから、おそらくデニソーワ人との交雑を通してホモサピエンスに導入されたハプロタイプであることを明らかにしている。さらに、現在のオセアニア人の3割がこのハプロタイプを持つことは、急速に KIR3DL1*114 が選択されてきたことを示している。

そして驚くことに KIR3DL1*114 のホモサピエンスへ流入に伴い、HLA-A*24:02 を持つ人間がオセアニア人の多くを占めるようになっていることで、その比率はなんと46%にも達している。オセアニア人の出アフリカからのコースを辿ってそれぞれの地域でハプロタイプの頻度を辿ると、東南アジアのどこかでデニソーワ人との交雑の後、オセアニアルートで急速に KIR3DL1*114 が増大し、それと呼応して HLA-A*24*02 が上昇していることがわかる。

この共進化のメカニズムを探ると、この KIR/HLA の組み合わせが最も強い結合を示すことがわかった。すなわち、KIR3DL1*114 が導入されたことで、これに最も強く結合する HLA のハプロタイプが増加し、おそらく細胞をNK活性から守ることができる。

ただ、わからないのはここからで、その結果現在のオセアニア人はインフルエンザウイルスに対する感受性が高いことだ。研究でも、この HLA-A*24:02 にインフルエンザウイルスペプチドがが結合した複合体にも、KIR3DL1*114 が強く反応することを示している。KIR3DL1*114 は抑制型 KIR なので、当然ウイルスが感染し、HLA-A*24:02 にウイルスペプチドを提示している細胞は、KIR3DL1*114 によりNK 細胞のキラー活性から守られることになり、ウイルスへ感受性が上がる。

この結果は、確かに現在のオセアニア人がヨーロッパ人と比べてインフルエンザ感染に弱いことを説明するが、逆になぜ現在では感染抵抗性を弱めている、デニソーワ人由来 KIR3DL1*114 と、それに対応する HLA-A*24:02 の組み合わせが集団の中で広がってきたのかを説明できない。おそらく、現在ではウイルス感染性が高いことになってしまっている組み合わせも、他の観点から見ればよほどのアドバンテージがあったと考えられる。

以上、たしかにデニソーワ人由来の KIR が HLA ハプロタイプの頻度を変化させたことは面白いが、何がこの組み合わせのアドバンテージになっているかわからないと、フラストレーションだけが残ってしまう。

カテゴリ:論文ウォッチ

11月3日 自然免疫に関わる2型自然リンパ球が生後の抑制神経シナプス形成に関わる(11月1日 Science 掲載論文)

2024年11月3日
SNSシェア

新生児期に脳は刺激に応じてシナプスを剪定し、脳回路をより外界の刺激に適応するよう変化させる可塑性を発揮する。この重要な過程は、脳への刺激だけでなく、炎症刺激などによっても影響されることが知られている。例えば、この時期に寄生虫に強く晒されると、学習能力の低下が起こることが知られている。

今日紹介するカリフォルニア大学サンフランシスコ校からの論文は、新生児期の神経発達に、寄生虫に対する免疫を担う2型自然リンパ球 (ILC2) が、外界からの感染とは無関係に髄膜内で発達し、この細胞から分泌される IL13 が直接抑制性シナプス形成を促し、主に社会性を発展させることを示し、また IL4/13 と神経回路との関わりを示した興味深い研究、11月1日 Science に掲載された。タイトルは「Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior(2型自然リンパ球は抑制性シナプスを促進して社会性を発展させる)」だ。

ILC2 は新生児期に様々な組織で発達することが知られているが、この研究ではこのとき脳ではどうなっているのか、これまであまり問われなかった疑問にチャレンジしたことがハイライトになる。Single cell RNA sequencing と組織学を組み合わせて調べた結果、脳実質内にまでは侵入しないが、髄膜で生後急速に ILC2 の数が増加し、生後15日ぐらいでピークに達すること、このとき自然に IL-13 や IL-5 といった Th2 型サイトカインを強く分泌することを発見する。この ILC2 の増加とサイトカイン分泌を誘導するメカニズムについてはわからないままだが、おそらく外界からの刺激ではなく、発生の一つの過程として ILC2 が脳髄膜で発達していることになる。

IL-13 受容体は脳細胞で発現していることは何度も報告され、またこのブログでも紹介しているので、ILC2 の新生児期の発達は当然脳発達に影響が及ぶ可能性がある。そこで、ジフテリア毒素を特異的に発現させることで ILC2 を除去する実験を行うと、なんと抑制性シナプス形成が特異的に低下することを発見する。一方、抑制性神経細胞数や興奮性シナプスについては全く影響を受けない。

この効果が IL-13 が直接神経細胞に作用した結果であることを示すために、IL-13 の受容体 ( IL-4Rα と IL-13Rα1 のダイマー) を様々な抑制神経でノックアウトすると、抑制シナプスの減少が観察される。一方、他の細胞で IL-13 受容体をノックアウトしても、抑制性シナプスに影響はない。この結果は、ILC2 の発達と、そこから分泌される IL-13 が発生のシグナルとして、抑制性シナプス形成に関わっていることを示している。

抑制性シナプスと、興奮性シナプスのバランスの乱れは、自閉症や統合失調症の重要な特徴だ。そこで ILC2 を欠損させたとき行動変容が起こるかについて、様々な行動テストを用いて調べている。活動性や、不安症などは認められないが、他の個体との社会性を示す行動テストは ILC2 が欠損すると強く抑制されていた。

以上の結果は、本来は自然免疫細胞として進化してきた ILC2 が、免疫以外の組織の発達に、IL-4 や IL-13 を介して関与するようになり、その一つが脳内の抑制性シナプス形成を促進して、興奮/抑制バランスを安定させる働きを獲得したことになる。もちろん ILC2 は様々な外界の刺激にも反応するので、新生児期の感染は脳発達に影響が及ぶ可能性があるので、これからは発達期の髄膜 ILC2 は注目していく必要がある。

カテゴリ:論文ウォッチ

11月2日 アルコール毒を除去してくれる ALDHがオウムの鮮やかな赤い色の決定要因になっている(11月1日 Science 掲載論文)

2024年11月2日
SNSシェア

これまで3回、オーストラリアに鳥や動物を見に行って、名前が覚えきれないぐらいの鳥を見たが、なんと言ってもカラフルなオウムやインコの印象が強い。典型はゴシキセイガイインコで、カミさんが撮影した写真を掲載する。これからわかるように。緑、青、橙、黄色と本当に美しい。

これほど複雑な色合いを、マウスのようにメラニンだけでは到底説明はつかない。これまでの研究で、赤、橙、そして黄色まではオウムやインコ独自で合成する Psittacofulvins と呼ばれる色素がベースになっていることがはわかっていたが、異なる色を作る化学的基盤についてはよくわかっていなかった。

今日紹介するポルトガル・ポルト大学、米国ワシントン大学から共同で発表された論文は、Psittacofulvins からどのように黄色から赤までの様々な色が作り出せるのかを明らかにした研究で、11月1日号 Science に掲載された。タイトルは「A molecular mechanism for bright color variation in parrots(オウムの鮮やかな色の多様性の分子メカニズム)」だ。

研究では、まず様々な色彩の羽の化学分析から Psittacofulvins 分子の末端基がアルデヒドの場合は赤く、それがカルボン酸基になるほど黄色(緑も同じ)になることを発見する。

とすると、まさに色の多様性を決める酵素はアルデヒドデヒドロゲナーゼ (ALDH) 、すなわちアルコールからできるアルデヒドをカルボン酸に変えて無毒化してくれる酵素と同じということになる。そこで、羽を形成する羽囊細胞で発現している ALDH を探索し、ALDH3A2 が Psittacofulvins のアルデヒドをカルボン酸に変える酵素であることを突き止める。

一羽のオウムで濃い緑の羽根、薄緑の胸、そして真っ赤な頭それぞれで、ALDH3A2 の発現を見ると、見事に真っ赤な頭では ALDH3A2 の発現は低く、濃い緑の羽根で最も高いことから、間違いなく ALDH3A2 の発現量が羽の色を決めている。

次の課題は、ALDH3A2 が赤から黄色までの遺伝的多様性を種ごとに決めているメカニズムになる。幸い、交雑可能な同じ種で、赤いオウムと黄色いオウムが存在しており、それぞれの羽囊細胞、特に分化して羽を形成する分化した細胞で ALDH3A2 の発現量が大きく異なっており、これを決めているのが遺伝子発現に関わる調節領域の多型であることを突き止めている。

この結論をさらに突き止めるため、遺伝子調節領域のクロマチン構造や、結合転写因子についても詳しく調べているが、割愛する。結論をまとめると、極めて多様なオウムの色彩も、赤から黄色(緑)の変化については、ALDH3A2 の発現レベルが決めており、Psittacofulvins のアルデヒドとカルボン酸修飾のバランスで全て決まっているという結果だ。

もちろん羽の色だけでなく、模様の遺伝的基盤についても解明する必要があるが、色は多様に見えても、比較的シンプルなメカニズムで調節されているようだ。

カテゴリ:論文ウォッチ

11月1日 幹細胞は様々なエピジェネティック不安要素に備える必要がある(10月29日 Cell 載論文)

2024年11月1日
SNSシェア

毛根は多分化能を持つ幹細胞システムだが、これがなくなっても実験室のマウスは生きられるので、全身でノックアウトすると致死的な分子でも、毛根幹細胞系では研究がしやすい。特に毛根幹細胞は増殖と安定な休止期を繰り返すことから、幹細胞維持に必要な分子について多くの研究が行われ、またこのブログでも紹介してきた。

今日紹介するテキサス大学 MD アンダーソン ガン研究所からの論文は、内因性レトロウイルスを抑制しているエピジェネティック過程の調節因子の一つをノックアウトすると毛が消失してしまう原因を追及し、内因性のレトロウイルスの一部が、幹細胞システムにとって有害であることを示した研究で、10月29日 Cell にオンライン掲載された。タイトルは「Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration(幹細胞の活動とリンクして内因性レトロウイルスを抑制することが生体の組織再生に重要な働きを演じている)」だ。

この研究では、幹細胞が増殖休止を繰り返すとき DNA メチル化に関わるエピジェネティックな変化が起こり、このとき内因性のレトロウイルスを再活性化する危険があるため、これを抑制するメカニズムを幹細胞システムが持っているはずだと仮説を立てた。そして、これまで内因性レトロウイルスの抑制因子として知られるヒストンメチル化酵素 SETDB1 を毛根特異的にノックアウトしてみると、期待通り増殖期幹細胞が死にやすくなり、結果ヘアサイクルの期間が短くなり、最終的に毛が失われることを発見する。実際毛母の増殖細胞では、カスパーゼの発現が上昇して、細胞死が亢進していることが観察される。

この増殖幹細胞死の原因を探ると、期待通りマウスゲノムに最近組み込まれたばかりの内因性のレトロウイルスが再活性化し、ウイルス粒子まで合成されていることがわかる。言い換えると、ほぼウイルス感染と同じ状態が起こっている。そこで HIV などに用いられる抗ウイルス剤を投与してウイルス活性を抑制すると、ヘアサイクルを正常化させることができる。また、ウイルスに対する防御センサー AIM2 分子をノックアウトしても、毛根幹細胞の減少を抑えることができるため、細胞内で抗ウイルス反応が誘導され、炎症的細胞死が誘導される可能性が高い。

では直接ウイルスが細胞を傷害しているのか調べるとそうではなく、細胞死の原因はウイルスの複製と転写が活発に起こるため、転写と複製の競合しておこる DNA 損傷が、特に増殖幹細胞で高まり、これが細胞死の原因であることを突き止める。以上の結果は、SETDB1 が存在しないと、幹細胞増殖期に内因性レトロウイルスが活性化するのを抑えきれず、ウイルスの転写と複製が活発化し、その結果起こる DNA 損傷が細胞死を誘導していることを示している。

とすると、最後に残った問題は、内因性レトロウイルスのエピジェネティックな抑制が増殖期の幹細胞で特異的に外れるメカニズムになる。内因性レトロウイルスは通常 DNA メチル化により抑制されている。増殖幹細胞では、メチル基をハイドロオキシメチル基に転換する酵素TETが上昇しており、これを欠損させると、SETB1 が存在しない動物でも毛根は正常化することから、TET による脱メチル化反応がウイルス活性化に関わっている。そして、TET によりハイドロオキシメチル化されようとしている領域のヒストンを SETB1 が抑制的に変化させて、染色体を閉じて、ウイルスの活性化を抑制していることを明らかにしている。

実際には、SETB1 により誘導される H3K9 メチルヒストンの関わりを詳細にしらべ、さらに幹細胞の運命を決定する転写因子との関わりを調べて、なぜ増殖期幹細胞だけで、しかも完全なウイルス機能を持つ内因性レトロウイルスだけを SETB1 が抑制するのかについて詳細に検討されているが、ここでは割愛する。

以上の結果は、私たちのゲノムは常に新しいレトロウイルスに晒され、これに対してゲノムに組み込まれるとすぐにエピジェネティックに抑制仕組みを我々は備えているが、増殖、休止を繰り返す幹細胞では、通常の DNA メチル化だけでは新しく組み込まれたウイルスの抑制が外れやすい。そのため、ヒストン修飾を介する別ルートの抑制システムが用意されたことを示している。

まさに、利己的遺伝子とホストゲノムのバトルが新しい進化の引き金を引く面白い例だと思う。

カテゴリ:論文ウォッチ
2024年11月
« 10月  
 123
45678910
11121314151617
18192021222324
252627282930