2018年4月10日
私の小学校時代からの友人はこの数年、腎臓癌で治療を受けている。再発、転移などがある割には、質の高い生活が送れているのは、おそらく元のガンの性質が良い方だったのだろう。もちろん、主治医の適切な処置にも感謝すべきだと思う。ただ、いつか現在の薬剤でコントロールがきかなくなったら、次ぎは免疫チェックポイント療法かなとメールで話している。腎臓癌もオプジーボ使用が承認されているガンだ。
私の友人が経験してきたように、腎臓癌に対しては、これまで様々な治療法が存在し、IL-2やインターフェロンのように免疫を標的にする治療が効果を示すこともわかっている。一方、進行した外科治療が適応にならない腎臓癌に対するもう一つの薬剤として現在スニチニブが認可され、効果の高さから世界的にも標準治療になりつつある。血管増殖因子受容体VEGFRとそれに近縁のチロシンキナーゼ受容体に効果がある飲み薬で、ガンへの血管の供給を止める一種の兵糧攻めだ。このため、わが国でもオプジーボなどの免疫チェックポイント治療が認められるのはあくまでも、スニチニブなどの効果が見られない場合に限られる(私の印象で確かめてはいない)。
このように、さまざまな治療薬が認可されていることは、もちろん患者さんにとっては嬉しいことだ。ただ、私は臨床に関わっていないので間違っている可能性もあるが、様々な薬剤が、しかも組み合わせて用いられる腎臓癌は、今や製薬企業がそれぞれの薬剤の優位性を示す戦場になっている気がする。新しい組み合わせで、現時点での標準治療を置き換えるための競争だ。実際、血管新生を標的にする薬剤だけでも現在何種類も利用できるはずだ。
今日紹介するスローンケッタリング癌研究所を中心に214人が参加した臨床治験は、まさにこんな例で、現在進行腎癌の標準治療になりつつあるスニチニブをコントロールにして、なんとオプジーボとともに、同じ会社から発売されているもう一つのチェックポイントCTLA-4を標的にしたイピリムマブを組み合わせた2重チェックポイント治療の優劣を比べている。タイトルは「Nivolumab plus Ipilimumab versus Sunitinib in advanced renal cell carcinoma (進行性の腎臓癌に対するニボルマブ+イプリムマブ対スニチニブ)」で、4月5日発行のThe New England Journal of Mediineに掲載された。
対象は、未治療の進行性腎臓がんの患者さんで、約500人づつ平均で25ヶ月追跡している。
詳細は省くが、腎臓がんに対しては最初から免疫チェックポイント治療は効果を示す。しかも、スニチニブと比べると、癌が完全に消えるケースが1%に対して9%、癌が縮小した率は27%に対し42%、癌の進行を抑えることができた期間は8.4ヶ月に対し11.6ヶ月、そして18ヶ月目の生存率は60%に対して75%だ。加えて、治療による副作用はチェックポイント治療の方が少なく、生活の質も守られるという結果で、下世話な言い方をすれば、チェックポイント治療の圧勝と言っていいだろう。
もちろん、この結果は私の友人も含め、患者さんにとっては素晴らしい結果だ。健康保険に収載されれば、患者さんの負担はとくに変わることはない。私も患者の立場なら、この方法の早期承認を求めるだろう。
それでも何か気になるのは、新しい薬剤の価格が高騰していることと、効果のある薬もさらに効果がある薬に短期間で置き換わる状況が生まれていることだ。すなわち新薬が次々と開発されるのは、患者にとっては喜ばしいことだが、一つの薬の寿命が特許期間よりはるかに短くなると、それを見越して初期価格が高騰していく心配だ。さてどうするのか、処方箋がないのが最大の問題だ。
2018年4月9日
医療費が高騰する中で、国民全体の健康という中では、ワクチンの重要性が強く認識されている。これは細菌や、ウイルスに対してだけではなく、例えばアルツハイマーや、動脈硬化に対してもワクチンの開発が進んでいる。しかし、免疫反応はただ抗原を注射すれば良いというものではない。抗原が樹状細胞に取り込まれた後の、様々な炎症反応により、免疫誘導が決まるが、このプロセスを最適化する必要がある。このことが最もよくわかるのが、ワクチンに使うとき病原体が生きている方が明らかに免疫能が強いことで、天然痘撲滅もおそらく生きたワクチンを使ったお陰で達成されたと思う。
自然免疫の研究がこれほど進んだので、生きた病原体がなぜ免疫誘導が高いのかについてはとっくにわかっていると思っていたら、案外そうではなかったらしい。今日紹介するベルリンのシャリテからの論文は大腸菌をモデルに生菌と死菌の免疫誘導能の差を調べた研究で4月号のNature Immunologyに掲載された。タイトルは「Recognition of microbial viability via TLR8 drives Tfh cell differentiation and vaccine response(TLR8を介して微生物の生死を認識することで濾胞型Tヘルパー細胞の分化が誘導されワクチン反応が成立する)」だ。
研究では、毒性を遺伝操作で除去した大腸菌に対する免疫反応をモデルに、まずヒトの単核球に死菌と生菌を取り込ませ、ヘルパーT細胞の誘導脳を調べ、生菌を取り込んだ単球だけが濾胞型の強いメモリーT細胞を誘導できることを示している。
あとは、生菌と死菌を取り込んだ単球の遺伝子発現を比べ、最終的にIL-12とTNFの発現が生菌を取り込んだ時だけに上がること、また濾胞型のT細胞の誘導にはIL-12を中心に、TNFなど幾つかの補助的サイトカインが必要であることを明らかにする。
最後に、このサイトカイン反応の誘導には細胞内リソゾームで発現する自然免疫受容体、TLR8が必須で、おそらく生菌の場合のみRNAを感知してIL-12分泌を誘導すると結論している。
話はこれだけで、ではこれで生菌と死菌の差を説明できたかというと、私は一部しか説明できていないと思う。一本鎖RNAは死菌にも存在する。また、天然痘や狂犬病などウイルスの場合と、肺炎球菌のような細菌の場合で、結果は同じなのか明らかにする必要がある。もちろん、TLR8のアゴニストをアジュバントにして、死菌でも同じ効果を持つユニバーサルなワクチン作成法が開発できればそれでもいい。
論文としては少し足りないと感じたのか、研究では豚をモデルにしたワクチン摂取実験、また人間のTLR8受容体で強い反応を示す多型を発見したことなどを合わせているが、本質ではないと思う。この研究は、アジュバント開発に至って初めて、その意義が出てくる。
2018年4月8日
SLEは全身性の自己免疫病で、私が医学部を卒業して以来、病気を管理するという点では一貫して改善してきていると思う。しかし、残念ながら多くの自己免疫疾患と同じで、根本的な治療についてははっきり言ってまだ先が見えないと言ってもいい。一つの原因は、なぜこのような全身性の自己免疫性の炎症が誘導されてしまうのか、未だにはっきりした答えがない点にある。ただ、かなり前から、ウイルスや細菌に対する免疫反応が病気の引き金になる可能性が議論されてきた。
今日紹介するエール大学からの論文は、この引き金が細菌に発現するRNA結合タンパク質Ro60ではないかと検討した研究で、3月28日にScience Translational Medicineにオンライン掲載された。タイトルは「Commensal orthologs of the human autoantigen R060 as triggers of autoimmuneity in lupus(人間のRo60に対応する常在細菌の相同分子はSLEの自己免疫の引き金になる)」だ。
Ro60はRNA結合タンパク質で、病原体やトランスポゾン由来を始めとするノンコーディングRNAの検出に何らかの役割を果たしているのではと考えられている。このタンパク質に対する自己抗体が、SLEの半数、亜急性SLEの90%、シェーグレン病の80%に見られることから、Ro60は病気の引き金として疑われてきた。
Ro60はほとんどの生物に保存されていることから、この研究では常在細菌のRo60が免疫の引き金になっていると着想し、3種類の細菌のRo60がヒトのRo60抗原ペプチドとほぼ同じペプチドを持っていること、SLEの患者さんではこの3種類のうちいずれかが、常在菌として存在していることを見出している。
あとは患者さんの血中の自己のRo60反応性のT細胞が細菌由来のRo60と反応すること、また自己抗体も細菌のRo60と反応することを示した後、無菌マウスにこれらの細菌を移植することで、自己反応性のT,B細胞が誘導されることを示している。
以上から、著者らはRo60が引き金になる可能性を強調しているが、因果性という点ではまだまだはっきりしない。というのも、自己免疫病が誘導された免疫システムを移植し直して、病気が起こるかどうかを調べないと100点の答案にはならない。実際、Ro60 ノックアウトマウスでは自己免疫病が起こるが、これはRo60の作用が失われ、異常RNAが自然免疫を刺激して、炎症が起こるからだと考えられている。とすると、Ro60に対する抗体は、一種の2次産物と言え、引き金ではない。その意味で、不完全という印象が否めない論文だが、根治のためには、このような地道な研究の繰り返しが重要だと思う。
2018年4月7日
人類に最も近いサルはチンパンジーとボノボだが、両者の行動様式には大きな差があり、霊長類学者や人類学者の興味を引いてきた。例えば、有名なGoodallによるチンパンジーの研究により、肉を求めて他のサルをハンティングするだけではなく、他の群れを襲って殺戮するという衝撃的な行動が明らかにされた。一方、ボノボでは群れ同士の争いはなく、群れの中でも、1匹のオスが群れ全体を支配するという構造ではなく、性行動自体は生殖目的に限らずメス優位の乱交型の、平和的行動様式であることなどが示されてきた。
このような研究論文や著書を読むと、熱帯雨林や動物園で観察を続けることが、結局人間や自分自身を考えることになり、研究自体に見識と想像力が必要であることがよくわかる。事実、ボノボ研究というと多くの著書のあるdeWahlが頭に浮かぶが、彼の「ボノボと無神論」という本などを読むと、本当に深い教養と思考に裏付けられた研究者であることがわかる。残念ながら、我が国の科学者の本を読んでも、同じような印象を持つことはほとんどない。これは経験を面白いよそ事と捉えるのか、我が事と捉えるのかの教養の体系の違いのような気がする。
前置きが長くなったが、今日紹介するのはボノボのハンティングの後の予想外の行動について調べたリバプール・ジョン・ムーア大学からの論文で4月5日号のHuman Natureに掲載された。タイトルは「Food Sharing across Borders(群れの境界を超えた食料の共有)」だ。
チンパンジーが肉を求めて群れでヒヒなどの小型サルをハンティングすることはGoodallの研究などで有名で、私も生命誌研究館のブログに狩りの様子について説明したことがある(http://www.brh.co.jp/communication/shinka/2017/post_000022.html)。単純化してチンパンジーの狩りを表現すると、他の個体と目的を共有することがないため、群れで狩りをしていても、各個体の頭にあるのは、自分が餌にありつくだけだ(http://www.brh.co.jp/communication/shinka/2017/post_000023.html)。従って、獲物を分け合うのはかなり近い間柄の個体だけで、群れの中でも、一緒に狩りをした仲間でも餌を共有することはあまりない。
一方、ボノボは平和的で狩りをほとんどしないと考えられていたが、最近で小型猿や他の哺乳類をハンティングすることが知られるようになった。その結果、ボノボでは、獲物をメスが仕切って分け合うことが明らかになり、ここでもボノボとチンパンジーの差が浮き彫りになった。
この研究では、この獲物の共有が、グループを超えて起こるのかどうか観察を続け、ついにその現場を確認したという論文だ。現場はコンゴの熱帯雨林で、もともと別々の縄張りで生活している2つのグループを長期的に観察する中で、一つのグループのオスが捕まえたダイカーを、他の群れのメスにも分け与える行動を発見した。ダイカーは比較的大きいので、このようなことが起こったのかもしれないが、自分の群れだけではなく、メスに主導されて他の群れにも肉を与え、メスはそれを子供にも分ける。もっと驚くのは、異なる群れのメス同士でももらった獲物を分け合うことだ。
このように群れの境界を超えて、獲物を分け与える行動が観察できたのは、今回が初めてのようだ。メスが仕切る社会構造のボノボならではの行動だが、ボノボと700万年前に別れたアウストラロピテクスはボノボ型か、チンパンジー型かぜひ知りたいところだ。その後、erectusに進化してから男女の体格差がなくなっており、おそらく一夫一婦になると思うが、この過程もボノボ型の乱交型を経て起こったのか(私はそう思っているが)、オス主導で起こったのか、今後もボノボ研究から目が離せない。
2018年4月6日
ゲノムから系統関係を計算すると、マウスはヒトやサルに最も近い実験動物で、大型動物として実験研究に用いられる、犬、豚などとヒトとの距離は遠い。それでも、例えばカテーテルの練習はもっぱら豚が使われているし、外科的な研究は大型動物なしには難しい、寿命の問題も重要で、発症までに時間がかかる場合、マウスはあまりに寿命が短い。この意味で、大型動物を用いた疾患モデルを作ることは重要だ。
今日紹介する広州にある中国科学院生物医学健康研究所からの論文は、豚を使ってこれまで難しかったヒトのハンチントン病モデル作成に成功したことを報告する論文で、5月3日号のCellに発行予定だ。タイトルは「A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease(Huntingtinをノックインした豚モデルはハンチントン病の特異的な神経変性を再現する)」だ。
個人的な話になるが、この研究所の設立にはアメリカで早くからクローン動物の作成に成功していた中国人科学者Xiangzhong (Jerry) Yangが様々なアドバイスをしていたように思う。私が初めて会った時、彼自身は唾液腺ガンでアメリカを離れることはできなかったが、新しい研究所の構想を話してくれた。その後ハードワーカーのDuanquin PeiがDirectorとして、胚操作の強みを生かした立派な研究所に成長したと思う。
ハンチントン病は、Huntintin遺伝子の第一エクソンに長いCAGの繰り返し配列を持つ人に発症する、現在では治療法のない神経変性疾患で、特に大脳の奥の線条体の尾状核の神経細胞が選択的に変性し、付随運動や認知症、そして後期には呼吸障害が現れる優性遺伝病だ。このグループはこれまでも、長いCAGリピートを持つ豚モデルの作成を試みていたが、異常分子の発現の線条体選択性が再現できず、豚は発生過程ですべて失われていたようだ。
そこで、クリスパー/Cas9を用いて、150回繰り返すCAGリピートがhuntintinに導入された豚の線維芽細胞を作成、この線維芽細胞の核を取り出し、豚未受精卵に戻してクローン豚を作成している。クリスパーの効率がいいと言っても、2400近い遺伝子導入実験の中からようやく9クローンが得られている。さらに、線維芽細胞の核を3000近い卵に核移植し、全部で6匹のクローンブタ作成に成功している。金も、人手もかかる大変な仕事だと思う。
このうちの一匹を起点に2年でようやく15匹のF1、10匹のF2を作成している。こうして得られたCAGリピートを持つブタの多くは、5ヶ月経つと急に運動障害を発症する。さらに、ヒトでは後期にしか現れない呼吸障害も早期から現れる。実際、最初の世代も10ヶ月でほとんどが死亡しており、繁殖も大変だったと想像する。そして何よりも、マウスモデルではうまく再現できなかった、線条体尾状核の選択的神経脱落が見られ、極めて人のハンチントン病に近い
病態であることが、解剖学的、組織学的に確認されている。発症が早いのは、150という、普通より2−3倍長いリピートを用いたためだろう。
具体的な病変などの説明はすべて省くが、要するに人間の病気に近い大型動物疾患モデルができた。しかし実際の臨床的解析はこれからだと思う。今後、コストはかかってもコンスタントに同じハンチントンモデル豚の生産ができれば、治療の切り札として期待されている細胞治療による治療の可能性を確かめることができるだろう。もちろん、CAGから作られるポリグルタミンの毒性を和らげる薬剤のテストにも用いられる。
しかしクローニングとクリスパーを組み合わせてこの目的を達成した論文を見て、今は亡きJerry Yangを思い出した。
2018年4月5日
哺乳動物の胚は、受精後卵割を繰り返す中で将来胎盤になるトロフォブラストと、胎児へと分化する内部細胞塊に分かれる。この過程は分化マーカーも整備され、また試験管内で分化が決定して胚盤胞と呼ばれる構造ができるまでを試験管内で再現できるため、かなり研究が進んでいると言っていいだろう。この過程で最終的運命が決まるのが、8細胞期から16細胞期へと至るプロセスだが、それまで細胞が接し合う塊だったところに、構造に秩序をもたらす細胞接着構造が形成され、2種類の細胞が内と外に分離する。この、新しい秩序が分裂しながら自然に形成されることを私が実感したのは、細胞分裂のオーガナイザーである中心体が存在しないマウス胚で、紡錘糸が細胞同士の膜が接する場所に発生し、接着分子を膜へと輸送する働きを果たしながら、細胞分裂のオーガナイザーとしても働くという、思いもかけない結果を示したシンガポールからの論文を見た時だ(昨年9月5日に紹介した
http://aasj.jp/news/watch/7325)。
そして同じシンガポールA*Starのグループから、8−16細胞期のアクチンの動きを調べ、やはり思いもかけない挙動が初期胚で見られることを示した論文が4月19日号のCellに発表された。タイトルは「Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation(伸びていくアクチンの輪がマウス胚の接着を閉じて胚盤胞を形成する)」だ。
一般的上皮では、細胞接着構造により細胞骨格分子がオーガナイズされ、特にアクチンは接着班に集まって見える。当然初期胚でも細胞同士は未熟ではあっても接着構造を形成しており、そこに濃縮されていると思っていた。ところが、この研究では16細胞期、接着部位と離れた表面側(apicalと呼ぶ)にアクチンが構造化されて(F-アクチン)リングをを形成し,それが大きく伸びて最終的に細胞接着部位に一体化することを発見した。これまで、多くの人が初期胚のアクチンを調べたはずなのに、どうしてこれほど特徴的な像を見落としていたのか、不思議に思う。いずれにせよ、この特徴的なアクチンの挙動を発見したことがこの研究のハイライトで、あとはすでに調べているチュブリンの挙動と対応させながら、細胞学的に詳しく調べている。美しい写真とビデオでデータが示されており、これを文章で表現するのは難しい。詳しく知りたい方は、是非論文に当たって欲しい。
ここでは詳細を省いて、これらの解析から著者らが考えているこの特徴的アクチンの挙動の分子背景、および生物学的意味だけを簡単にまとめておく。
1)アクチンリングは8細胞期でも見られ、細胞非対称性形成と密接に関わっている。この時期の紡錘糸は膜接着部位に形成されるが、これを起点としてapical側へとオーガナイズされる細胞内での物質の流れがこのリングの形成に関わる。
2)分裂が終わり16細胞期になると収縮リングに集まっていたアクチンがapical側へ移行、アクチンリングが形成され拡大する。この時、微小管はリングの上方に集まる。
3)16細胞期のアクチンリングは大きく拡大するが、こうして形成されるアクチンにはミオシンが結合していないため、アクチンの運動ではなく、細胞全体の形態が変化し、微小管の集まった外部表面が広がることで、アクチンリングが伸びると考えられる。
4)こうして広がり始めたアクチンリングは細胞接着構造に接合するが、これを起点にミオシンやカドヘリン、などさまざまな接着分子が集まり、ジッパーが閉まるように細胞接着部位を、adherence junction, tight junctionの揃った完全な上皮型接着構造に転換する。
5)これにより完全に胚内と、胚外が分離され、胚盤胞の内腔が形成される。
以上がシナリオで、最初にアクチンをリング状にまとめておくことで、非対称性だけでなく、接着構造を迅速に漏れなく形成することが可能になっている。
一般の方には難しい話になってしまったが、胚発生に関わっていた一人として、本当にうまくできていると感心した。
2018年4月4日
小児の神経は可塑性に富んでいる。ということは、早期に診断できれば、発達段階で何らかの介入が可能になる。現在Fragile X, Rett症候群, MECP2重複症など、遺伝性が明らかな疾患については、生まれてすぐに診断して必要に応じて遺伝子治療などを行う可能性が出てきている。このため、神経細胞を標的にした遺伝子治療に期待が集まっている。
しかしガンと同じで、小児の疾患の中には、例えば父親の精子形成時に起こった新たな突然変異が病気の原因になっているケースも多い。発生過程でこのような遺伝子変異が影響してしまうと、心臓や脳の発達異常が起こってしまう。ただ、この場合も、子供で新しい遺伝子変異が生まれていることは確認できることから、どの遺伝子に異常があるのか、早期に診断できる可能性がある。このことを最も強く示したのが、昨年英国のサンガーセンターを中心発表された小児の診断がつかない神経疾患についてのエクソーム解析で、このような症例の42%は、新たな突然変異が原因である可能性を示していた(Nature 542:433,2017)。
しかしそれでも6割は原因不明のまま残る。これをなんとか遺伝子で診断できるようにできないか努力したのが今日紹介する、同じサンガーセンターからの論文で3月29日号のNatureに掲載された。タイトルは「De novo mutations in regulatory elements in neurodevelopmental disorders(神経発達障害での遺伝子調節領域の新しい突然変異の寄与)」だ。
この研究もDDDとよばれている発達障害の子供のコホートを対象にした研究で、今回はエクソーム(タンパク質に翻訳される領域)ではなく、遺伝子発現を調節している領域に絞って、新たな突然変異(De Novo Mutation)が起こっていないか調べている。このためには当然全ゲノム解析が望ましいが、4000人にもなる患者さんの全ゲノムのDNA配列を解読することはできるだろうが、そのデータを解析するのは至難の技だ。この研究では、代わりに進化的に保存された、すなわち神経発生に機能していると考えられる非翻訳領域(CNE)に絞って解析している。この時心臓の発生に関わることがわかっているCNEも同時に調べ、神経発生異常に特徴的な突然変異を探索している。
それでもデータは膨大で、結果はデータを統計学的、推計学的処理を行ったグラフや表で示され、その内容について私も正確な判断ができるわけではない。このため、詳細は省いて結論だけをまとめておく。
1)まず間違いなく、遺伝子発現調節領域や、スプライシングに関わる領域に生じた新たな(de novo)突然変異と関連づけられる発達異常は存在する。
2)ただ、推計学的に因果性が示唆されても、個々の変異により障害が誘導されるメカニズムを特定することは、まだまだ時間がかかる。
3)今回の研究で新たな変異として6000近くの変異が発見されているが、統計学的には、このうち良くて5%が病気の発症に関わっていると推定されるだけで、おそらく調節領域に起こった新たな変異のほとんどは発達異常を誘導している可能性は少ない。
一言で行ってしまうと、これまで研究が進んでいる遺伝子調節領域やスプライシング領域のみ対象にしても、遺伝子による原因不明の病気の診断率は期待したほど上がると期待できないという、ちょっと拍子抜けの結論だ(もちろんこれがわかることは極めて重要で、この論文の重要性は変わらない)。
原因として、多くの障害は結局エピジェネティックな過程によるのかもしれない。ただ、遺伝子発現調節について、進化的に保存されている場所はそれほど多くないことも考えられる。従って、情報処理力を上昇させて、全ゲノム解析を行うことが次のステップになるだろう。親からの遺伝性のない発達障害を、エピジェネティックとして片付けないで、どこまで「ゲノムによる診断率をあげられるのか、著者らの執念が感じられる研究だった。
2018年4月3日
ガンや変性疾患などと違って報道される機会は多くないが、心臓や脳の血管が詰まる卒中に対する治療は急速に進展してきている。実際、早く病院に搬送されて血栓溶解のためのtPA治療を受けた友人は、本当に卒中が起こったのと思わせるくらい完全回復している。このような治療は発作後治療が始まるまでの時間との戦いになる。TPA治療の場合は5時間が目安といえる。これに加えて、血栓を溶かすのではなく、カテーテルで掻き出す血管内治療も行われ、目覚ましい成績を上げている。特に血栓が大きい場合はその効果は絶大だ。ただこの治療法の場合は、設備が整い、熟練の医師がいる施設が必要だ。従って、卒中と診断された後、救急車内で血栓除去を行う程度か、tPA治療でいいかを判断する必要がある。もちろん血栓除去術でも時間との戦いで、快復率は1時間かかるごとに20%低下する。
同じ課題は心筋梗塞でも見られるが、この場合心電図という強い味方があり、救急車内で適切な診断が可能になっている。ところが、脳卒中になるとその程度を診断する方法は、幾つかの症状や兆候を組み合わせた診断基準によるしかなく、血栓除去術の適応かどうかを決めるためのトリアージの精度はどうしても低かった。特に、必要ないのに必要と診断する率が3割以上(米国の話)で、これでは熟練の医師も体がいくつあっても足らない。
今日紹介する米国マウントサイナイ病院からの論文は卒中の程度をラジオ波を用いて診断するデバイスの検証論文でJournal of Neuro-interventional surgeryにオンライン出版された。タイトルは「The VITAL study and overall pooled analysis with the VIPS non-invasive stroke detection device(非侵襲的卒中検出デバイス(VIPS)のVITAL プロジェクト研究)」だ。
この研究では、約250名の卒中の患者さんに、通常のトリアージと診断を行うとともに、VIPSと呼ばれる頭に装着して卒中の程度を診断するデバイスによる診断と比較している。
このデバイスは、左右の後頭部から低いエネルギーの高周波を照射し、前にあるセンサーで受けるという比較的簡単な機器で、要するに超音波の代わりに頭蓋を通る高周波の電波を用いて、脳の状態を調べる機械だ。画像は全くでないが、卒中により血流が止まり、脳組織のインピーダンスが変化すると、その程度をほぼ瞬時に診断できる。また、経時的にも悪化していくスピードもわかる。幸い卒中が両側で起こることはほとんどないので、左右を比べることで程度の診断がしやすい。おそらく救急車に設置することはコスト面でも、技術面でもそう難しくないと思う。
結果だが、血栓除去術の対象者の診断率は93%で、救急車内での搬送先の診断に大きく貢献するという結論だ。救急医療としては大きな進展ではないだろうか。いつでも卒中に襲われる年齢の人間としては心強い。
もちろん、このトリアージの前提として、卒中に対する地域の救急体制の構築があるだろう。
2018年4月2日
私が熊本大学で自分の教室を持てるようになった1980年代後半は、細胞増殖に関わる遺伝子が急速に明らかになった時期で、血液学や免疫学ではサイトカインの遺伝子クローニングラッシュだったし、遺伝学的にも増殖に関わる突然変異マウスの遺伝子同定が可能になり、私たちもM-CSFやc-Kitなどに焦点を当てて研究ができた。この頃印象に残っているのは、ランダムに遺伝子を細胞に導入してガン遺伝子を特定する機能的遺伝子探索で、我が国でも例えば京大では同じ棟に教室を持っていた野田さんなどはその典型だったと思う。いずれにせよ、この頃の研究は包括的にスクリーニングを行なっても、機能は個々の遺伝子に絞って研究を行うのが普通だった。
それから20年、ガンゲノム解析が進んだ現在は一つのガンに多くの分子が関わることが分かってしまって、解析が進めば進むほど当時のような増殖に関わる機能的探索が難しくなっている気がする。そんな隙間を埋めるのが今日紹介するハーバード大学からの論文で、4月19日号発行予定のCellに掲載された。タイトルは、「Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns(細胞増殖のコントロールの組織特異性がガンのドライバー遺伝子の染色体異常の背景に存在する)だ。
タイトルを見て研究者なら、何を今更と思ったと思う。それぞれの細胞は組織特異的な増殖調節機構を持っており、ガンの増殖もこの制限からは逃れられないことは周知の事実だ。しかし一つの組織でガン発生に関わる組織を網羅的に探索する機能研究の数は多くない。この研究では、乳がんとすい臓がんについて、バーコードでラベルし、タモキシフェンで平均的に発現を誘導できるようにした6ー8万のオープンリーディングフレーム(ORF)をレトロウイルスで乳腺と膵管上皮細胞に導入、遺伝子を誘導する条件で10回継代を繰り返した後、培養細胞中に残っている遺伝子をバーコードで特定している。
もしORFが増殖を促進するなら継代により選ばれた増殖力の高い細胞では濃縮されているはずだし、一方細胞の増殖を抑制する遺伝子は全て除去されていると期待される。この方法で、それぞれの細胞について200を越す増殖促進分子が、やはり400ー600種類の増殖を抑制する遺伝子を特定している。個別の遺伝子に焦点を当てない、新しいタイプの機能アッセイが可能になっている。
特定された遺伝子を眺めて一番驚くのは、乳腺細胞、膵管細胞、線維芽細胞の3種類で共通に増殖促進作用が認められるのは3種類しかなく、他は全て組織特異的である点だ。サイクリンなどもっと出てきても良さそうだが、基本増殖メカニズムは十分足りているのだろう。一方、増殖抑制遺伝子については100を越す分子が共通に働いており、発生学的に考えると、なるほど合理的にできていると思う。
とはいえ、それぞれの組織で発がん遺伝子ネットワークとして知られているものは、ほとんど今回の機能アッセイで特定されている。また、ガンに関わるゲノム上のコピー数の変化や、染色体異常と、今回明らかになった遺伝子は相関性が強く、今後このような機能アッセイによる増殖促進、抑制分子のリストがあると、ゲノムの解析もさらに楽になると考えられる。また、クリスパーなどを用いたノックアウト実験も行い、今回特定された遺伝子が確かに増殖に関わることまで調べているので精度も高い。
このように、機能が確認された増殖関連遺伝子のリストが、それぞれの組織で作成できることを示したことがこの研究の重要性で、これ以上詳細に踏み込むことはやめるが、乳がん、すい臓がんという重要なガンを、今回明らかになった遺伝子を眺めながら考えてみることは重要だろう。
これを示す例として挙げられた驚くべき結果は、乳がんの増殖に関わるケラチン関連遺伝子が20個近く発見され、それらがE2Fを介して増殖誘導に関わることがこの研究で発見されたことだ。すなわち、これまでゲノム解析からわかっていたとしても、機能的側面がわからないためそのままになっていた分子が、新しくガンに関わるとして特定できることだ。
是非多くの組織で、同じような機能分子のリストができることを期待する。
2018年4月1日
我が国に正確な統計があるのか把握していないが、5年前の米国の統計ではメチシリン耐性黄色ブドウ球菌(MRSA)の年間感染数は8万余で、1万以上の死亡数に達している。この死亡率から考えると、MRSAはまちがいなく現代医学に残された最も重要な感染症の一つと言える。
もちろん、多くの製薬会社でもMRSAに効果のある抗生物質の開発にしのぎを削っていると思うが、アカデミアならではの方法でMRSAに対する抗生物質開発にチャレンジしているブラウン大学からの論文を見つけたので紹介する。タイトルは「A new class of synthetic retinoid antibiotics effective against bacterial persisters(耐性細菌に効果を持つ新しいクラスの合成レチノイド系抗生物質)」で、Natureにオンライン出版された。
この論文が最も印象深かったのは抗生物質のスクリーニングの方法だ。MRSAを培養したマイクロウェルに線虫を加え、ここに抗生物質を加えて線虫が生存できるか調べている。MRSAは線虫を殺すので、線虫が生き残るということはMRSAに効果がある薬剤が発見できたことになる。細菌を直接標的にすればもっと簡単にスクリーニングができるのにと訝しく思われると思うが、もちろんこれまではその方法で化合物が探索された。しかし、発見される多くの化合物は細菌だけでなく、細胞毒性が強いため、結局あとで他の細胞を用いた様々なテストが必要になる。これを一石二鳥でやってしまおうとするのがこの方法で、なるほどと納得する。
この方法で8万種類の化合物をスクリーニングし全部で185種類の化合物を特定している。その中から、現在卵巣癌に使われているadaroteneと同じレチノイド構造をもつ2種類の化合物に着目し、これらがMRSAに対する抗生剤に発展できる可能性を示している。
我が国メディアでは、一時、線虫でガンを診断するという方法がもてはやされたことがあるが、大事なのは現象論を科学に仕上げていく実力で、これがないと話題提供で終わる。この論文の著者らはこの点で極めてパワフルで、薬剤開発のために必要なあらゆる技術を駆使して選んだ2種類の化合物の作用機序を明らかにしている。
詳細を省いて概要だけ説明すると、この2種類のレチノイド化合物は疎水性の部分を用いて膜の脂肪2重膜に侵入し、その結果MRSAの細胞膜の透過性を上げることで殺菌効果を示す。同じように、卵巣癌に対する抗がん剤Adroteneも同じように脂肪2重層に突き刺さるが、効率が低い。都合のいいことに、MRSAには毒性があっても、同じ濃度では正常細胞に対しては毒性が低い。
抗生物質としてみたとき、これらの化合物はほとんど耐性が生じない点でも優れている。更に、細胞膜の透過性を上げるという性質から、ゲンタマイシンなどのタンパク阻害剤と組み合わせると高い効果を示してくれることも示している。
最後に、このうち化合物CD437により細胞毒性の低い化合物へと転換できる可能性も示している。線虫を使うという生物学者のセンスと、薬剤開発のプロ、メディシナルケミストとしてのセンスが両立していることがここからもよくわかる。もちろん最終的な化学構造に到達できたかどうかは、さらに検討が必要だが、レチノイドを骨格荷物化合物の可能性が示された点では重要な貢献だと思う。