過去記事一覧
AASJホームページ > 2022年 > 9月

9月21日(明日)午後7時からジャーナルクラブを開催します。

2022年9月20日
SNSシェア

8月31日、論文紹介でインドヨーロッパ語の起源をゲノムから探った上記論文を紹介(https://aasj.jp/news/watch/20429)しましたが、重要な論文なのでジャーナルクラブとして詳しく紹介します。

YoutubeのURL : https://www.youtube.com/watch?v=AJAqlSh9-2w

また直接参加したい人は、メールでリクエストして頂ければ、zoom URLを送ります。

カテゴリ:セミナー情報

9月20日 行動習慣とゲノムの相関(9月7日 Nature Genetics オンライン掲載論文)

2022年9月20日
SNSシェア

私たち人間のゲノムは、大体1000塩基に一つは配列に違いが存在し、この多型の組みあわせの違いが、個人から民族までの遺伝的違いを形作っている。この解析が可能になったおかげで、病気や様々な身体的特徴と関連することが統計学的に示される多型が現在数多くリストされている。ただ、この HP で何度も紹介しているように、それぞれの多型が、それぞれの形質にどう関わるのか特定することは簡単ではない。中でも生活習慣に関わる多型の解析には、生活習慣そのものが大きく影響し、さらに習慣もゲノムの影響を受ける可能性がある。例えば、肺がんのリスク多型の中には、喫煙が習慣性になるゲノム多型が含まれる可能性が考えられる。

今日紹介する米国マウントサイナイ医科大学と、スウェーデンウプサラ大学を中心に200近い研究機関が集まって発表した論文は、肥満や高脂血症と言ったメタボに直結する行動習慣と相関する1塩基多型(SNP)を調べた研究で、9月7日 Nature Genetics にオンライン掲載された。タイトルは「Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention(運動と座って動かない行動についてのゲノムワイド相関研究は行動の背景のメカニズムと病気予防に示唆を与える)」だ。

UKバイオバンクをはじめとして多くのデータが蓄積されることで、このような研究が可能になっている。この研究では、メタボに関わる習慣を調べるため、休日に強めの運動をするか(MVPA)? 休日は座ってテレビを見たりパソコンに向かっていることが多いか(LST)? 仕事中はほとんど座っているか? 通勤は車か? の4つの質問についての自己申告による答えを相関させている。

この分野に詳しくないと、行動とゲノムの相関と聞いて奇異に思われるとおもう。ただ、100万人近いデータがあると、どんな行動調査を取り上げても、相関のある SNP は出てくるものだ。実際この研究で、4つの質問に関して99の SNP がリストされている。後は、統計学的に有意かどうか、遺伝子発現パターンとの相関、他の形質との関係などを重ねて、その相関の意味を探っていくことになる。

次に、他の形質との相関を調べると、LST が低い(座っている時間が少ない)ケースや、MVPA が高い(よく運動する)ケースでは、BMI や高脂血症リスクが低いことがわかる。さらに、MVPA の高い人は、心臓病のリスクも低下している。

なるほどと思うが、この相関は、行動が先か、身体的性質が先かが問題になる。これについてはどちらが原因かを調べるソフトがあるようで、例えば BMI と LST で言うと両者が密接に関わる以上に、白黒をつけることは難しいが、傾向としては今回リストされた SNP はまず LST と相関し、その結果として BMI が来ると結論している。

行動に関わる遺伝子なので、当然脳神経系に関わる遺伝子を想像するが、単純ではないようだ。勿論ドーパミン神経に関わる遺伝子と MVPA との相関、ご褒美回路に関わる遺伝子、さらには網膜や視覚野に関わる遺伝子などがリストされ、なるほどと思えるが、面白いことに APOE や αアクチンのような、脳とは無関係の遺伝子がリストされてきたため、この2種類の多型についてさらに詳しく調べている。

まずアルツハイマー病との相関が知られている APOE の SNP、rs439538がCで、LSTが低いことは有意の相関が存在する。なぜ座らずに活動的な形質とアルツハイマーリスクが一致するかはわからないが、本当なら面白い。

さらに、休日の活動性と相関する αアクチンの多型はコーディング領域にあるため、さらに詳しく調べ、なんと行動的なヒトはアクチンの構造がフレキシブルで、運動によるアクチンのストレスが少ないことを示している。これが本当だとすると、筋肉の機能に合わせて活動性が上昇することになり、よく出来た話だ。

以上、この結果だけで何か結論するのは早い気がするが、行動とゲノムというかけ離れた領域を結びつける地道な研究が今後も重要だ。

カテゴリ:論文ウォッチ

9月19日 自立生命を細胞由来成分から再構成する(9月14日 Nature オンライン掲載論文)

2022年9月19日
SNSシェア

引退してからは、生物が存在しなかった地球に生命が誕生する Abiogenesis 過程や、全く新しいコミュニケーション手段としての言語の誕生過程など、創発と呼ばれるプロセスを自分なりに理解したいと思い、論文や本を集中的に勉強し、自分なりに納得いく説明ができるようになった。そればかりか、いくつかの大学ではこれらのテーマについて講義をする機会があり、若い人たちとこの問題について意見交流を続けている。

しかし、この分野の文献を漁り始めた10年前と比べると、Abiogenesis や言語誕生に関する研究は注目度も高くなり、多くのトップジャーナルに掲載されるようになった。当然のことながらこの大きな問題へのアプローチは多岐にわたっており、どれが Abiogenesis 研究に関連するかなど判断は難しい。

比較的歴史のある Abiogenesis 研究の一つの方向は、生物を一度解体して、再構成するアプローチで、例えばマイコプラズマのゲノムを入れ替えるといった研究もこれに入る。

おそらくこの中でも中心は、生物過程を人工的に合成した細胞様のコアセルベートの中で再構成する分野だと思うが、複雑な生命維持システムを閉じ込めること自体が難しい課題として立ちはだかる。今日紹介する英国ブリストル大学からの論文は、創意の溢れる方法で、バクテリアを解体して得られる様々な生命維持システムをコアセルベートの中に閉じ込めることに成功した画期的研究で、9月14日 Nature にオンライン掲載された。タイトルは「Living material assembly of bacteriogenic protocells(バクテリア合成に向けた原子細胞に生命分子を集める)」だ。

生命分子をバクテリアから集める実験は、細胞を一度完全に溶かして構成分子のみにするところからスタートするが、これを細胞レベルの限られた空間で実現できないと、分子が分散して、機能再構成は不可能になる。すなわち、勝負はこの問題の解決する方法に尽きるが、この研究ではコアセルベートの中に前もって生きた細菌を取り込んだ後、そこで細菌を分解して成分を閉じ込める方法を開発して、この課題を克服している。言ってみれば、普通の逆の方向性で細胞成分をコアセルベートに閉じ込めるのに成功している。

説明すると、diallyldimethylammonium chloride と ATP からできたカプセルを用いて、大腸菌のコロニーと、緑膿菌のコロニーを同時に混合すると、不思議なことに、大腸菌はコアセルベートの内部に緑膿菌が外部に分離したコアセルベートを30%ぐらいの確率で得ることができる。

このカプセルを、今度はライソゾームや細胞膜に穴を開けるメリチンなどで処理し、最後に低浸透圧にさらすことで、生きた細胞を完全に分解すると、膜は緑膿菌から、細胞質は主に大腸菌に由来する分子を持つ、独立したコアセルベートが完成する。

この中には大腸菌と同じ分子が一定程度含まれているので、様々な酵素活性を細胞質内で検出できる。しかし基本的にはほとんどの分子が均質に分布した分子スープ状態になっている。

この中の核酸を凝集させて核のような構造を取らせるため、このグループはなんと相分離技術を用いている。すなわち、ヒストンと CM-デキストランを加えると、核酸が相分離して凝集した核構造を作ることができる。

さらにここに G-アクチンを加えると、一種の細胞骨格が形成されるとともに、コアセルベートの中に水を含んだ小胞を形成させることができる。

この中でも一定の ATP 合成は短期間観察できるが、これだけでは形態などシステムの維持は難しい。そこでミトコンドリアの代わりに、生きた大腸菌をコアセルベートの中に取り込ませると、持続的 ATP が観察され、様々な分子の合成が続く。このことは、時間と共に細胞膜がしっかりして、大きな分子を通さなくなることから確認できる。

こうして順番に構造を獲得させた細胞は、48時間以内にアメーバ状のコアセルベートへと展開し、分裂はしないが細胞自体は成長し、エネルギー源の大腸菌も増え、少なくとも1週間以上形態を維持することができる。

結果は以上で、最終的には雑誌を手に取って、作りあげられた細胞の形態や構造を見てほしい。しかし、分解した分子から生命を再構築するという目的に向けて、大きな一歩になるのではとワクワクしている。

カテゴリ:論文ウォッチ

9月18日 細菌、バイオフィルム、ホスト細胞の全てに働く難治性皮膚潰瘍薬(9月14日 Science Translational Medicine 掲載論文)

2022年9月18日
SNSシェア

難治性の皮膚潰瘍は現代医学が取り組むべき重要な課題だ。今は元気にしておられるが、痛覚がないため小さな皮膚の傷が、難治性の皮膚潰瘍に発展して、外科治療のために何度も入院を余儀なくされた、脊髄損傷を持つ友人のFさんの戦いを見ていて、医学の限界をもどかしく感じる。

ひょっとしたらこの課題がかなりの程度解決できるのではないかと思わせてくれる論文が、ウェールズのカーディフ大学から報告された。タイトルは「Topical, immunomodulatory epoxy-tiglianes induce biofilm disruption and healing in acute and chronic skin wounds(局所的免疫作用を持つエポキシ・チグリアンは急性と慢性の皮膚傷害でバイオフィルムを破壊と損傷治癒を誘導する)」で、9月14日 Science Translational Medicine に掲載された。

この8月、私たちも自然を満喫したオーストラリア クィーンズランド・アサートン高原に生息する植物のエキスをスクリーニングしていた Ecobiotics 社は、野生の有袋類が嫌うFontaineaの種から、塗るだけで腫瘍の増殖を抑制できる成分、EBC-46 を発見した。現在この薬剤は、PKC 阻害活性があるとして、犬の腫瘍に対する塗り薬として認可され、使われている。

犬についての治験が進む中、EBC-46 が炎症を促進して皮膚の損傷治癒を促進するという発見が行われ、難治性の皮膚潰瘍にも利用できないか調べたのがこの研究だ。

難治性皮膚潰瘍で問題になるのは、感染と、抗生物質の効果を下げるバイオフィルムだが、この研究では、EBC-46 と、側鎖を変化させた EBC-1013 について、抗菌活性、バイオフィルムに対する作用などを調べている。最終的には、EBC-1013 を臨床応用に移すように思えるので、ここでは EBC-1013 についてのみ結果を紹介する。

EBC-1013 は、黄色ブドウ球菌を含むグラム陰性菌の細胞壁に突き刺さって、膜の機能を阻害し、一定程度の殺菌効果と、細菌の代謝変化を促す。

さらに重要なのは、損傷部位に形成されているバイオフィルムに侵入して、バイオフィルムの機能を抑制する点で、フィルム内のナノパーティクルの移動を測定する方法でこれを確かめている。

以上のように、細菌側では一定程度の殺菌効果と、バイオフィルムの機能阻害を誘導できる EBC-1013 は、損傷部位の様々な細胞にも働いて、炎症を高めると同時に、ケラチノサイトに働いて損傷治癒を高める効果があることを確かめている。

実際には、バイオフィルム障害から考えると、逆効果になると思われる白血球のアポトーシス誘導など、多彩な効果を示すため、一つ一つデミルと複雑すぎるが、全体としてみると傷を治す方向に強く引っ張る。

この効果は、牛の皮膚に焼き印を押したときの損傷治癒スピードを高めることだけでなく、糖尿病マウスでの難治性の皮膚損傷が、コントロールと比べて1ヶ月で完全に治ることからも確かめている。

以上が結果で、あまりにも多彩な効果があるため、その作用機序を特定するのは難しいが、細菌に対する直接作用、バイオフィルムに対する作用、そして損傷部位のホスト細胞に対する作用を併せ持っていることは間違いなく、これが難治性皮膚潰瘍を抑えてくれる。現在治験が進んでいるらしいが、今後は皮膚だけでなく、口腔、歯科領域にも拡がる予感がする。

カテゴリ:論文ウォッチ

9月17日 ダイエット効果を検証する難しさ(9月9日 Cell Metabolism オンライン掲載論文)

2022年9月17日
SNSシェア

機能性食品や特保の冠をつけた様々な食品やサプリが巷にあふれており、テレビの宣伝もおそらく1割以上はこのような製品に費やされているように思える。毎日この HP で科学を紹介していると、一般の方がどのような根拠でそれぞれの製品を選んでおられるのか、是非知りたいところだ。特に宣伝に使っていい効果について、どこまで真剣な審査で評価が行われているのか、一度専門家に聞いてみたいと思っている。

例えば最近話題になった塩野義の抗コロナ薬の緊急承認を認めなかったことからわかるように、薬事については評価のポイントもはっきりしており、緊急承認であっても有効という判定のハードルは高い。しかし、例えばダイエット効果があるお茶と言った製品の承認基準ははっきりしているのだろうか。

今日紹介する英国アバディーン大学からの論文は、肥満に対するカロリー制限治療時に、カロリーを朝昼晩、どのように振り分ければ効果が高いか調べた研究で、ダイエット効果を調べるためにはせめてこの程度の治験は要求すべきではないかと思った研究で、9月9日 Cell Metabolism に発表された。タイトルは「Timing of daily calorie loading affects appetite and hunger responses without changes in energy metabolism in healthy subjects with obesity(毎日のカロリー摂取のタイミングは食欲と空腹に影響するが、エネルギー代謝には影響がない)」だ。

この研究では BMI 30 以上の健康なボランティアを最終的には30人集め、全員約1700kCal という厳しいカロリー制限を行い、その間の体重変化や様々なエネルギー代謝指標、そして主観的な身体状況の報告などを克明に行っている。研究の目的だが、カロリー制限するとき、朝多く食べた方がいいのか、夜多く食べた方がいいのかを調べることで、朝グループはカロリーを45、25、20の割で朝昼晩に分けている。一方夜グループは全く逆の20、35、45と言う振り分けを行っている。

また、最初の4週は朝グループ、あるいは夜グループで始めた場合、1週間お休み期間をおき、今度はグループをスイッチするクロスオーバー研究になっている。

まず、1700Kcal と言う制限を続けると、全員平均で4kgぐらい低下している。しかし、研究の目的であった朝昼晩へのカロリー配分の違いは、結果に全く影響ないという結論になっている。基礎代謝、エネルギー消費、持続血糖モニタリング、胃内要物の通過時間など、かなり詳しい指標が調べられているが、全く変化がない。

唯一変化があったのは、朝グループでは空腹を覚える時間が減っており、満足感が持続する点で、これと呼応してグレリンなどの食欲ホルモンの分泌に明確な差を認めることが出来る。以上から、カロリー制限は、制限さえ守られればどのよな食事の分配でやっても効果は同じだが、朝多く食べる方が、空腹感に悩ませられることはない、と結論できる。

さて、ここまでネガティブな結果であるにもかかわらず、この論文が Cell Metabolismに 掲載された一つの理由は、介入期間がそれぞれ1ヶ月と短いものの、しっかりとしたプランで治験が行われている点にあると思う。たしかに週のうち何日か、様々な検査を受けるため通院するというのは大変だとは思うが、簡単な介入でも、最低ここまではやってほしいという条件が明確な点だ。

もちろん、私は機能性食品や特保と呼ばれる製品の認可条件についてはほとんど知らない。ただ、科学をとおして消費者を守ることも役所の重要な役目で、このような論文を読みながら、基準を常にアップデートしてほしいと思い、論文を紹介した。

カテゴリ:論文ウォッチ

9月16日 抗がん剤をハプテンとして免疫治療に用いる:大化けしてほしい発想の治療法(9月12日号 Cancer Cell 掲載論文)

2022年9月16日
SNSシェア

これまで何度も紹介しているが、多くのガンのドライバーとして働いている K-ras 変異を標的にした治療薬が開発され、期待通りガンの進行を遅らせることが治験で明らかになり、大きな期待が寄せられた。ただ、これも予想通り、単独治療では必ずガンの側で耐性が獲得され、完全な治癒を目指すためには、免疫治療など他の方法と組みあわせることが必要であることもわかった(https://aasj.jp/news/watch/18300)。

K-ras の変異に対する薬剤開発が遅れた最大の理由は、ras の分子構造がのっぺりとして凹凸が少なく、GTP や他の蛋白質との結合を阻害できる化合物が見つけにくい点にあった。この問題を解決する方法として、K-ras(G12C)分子のシステインに共有結合する化合物が開発され、最初に認可されたのが Amgen の Sotorasib を含め、現在使われている全ての化合物はこのタイプになっている。すなわち、薬を服用すると、細胞内の変異 Ras には小さな化合物が共有結合することになる。

このようなペプチドに共有結合した低分子化合物を免疫学ではハプテンと呼んでいる。1900年代初頭、抗体が小さな化合物の違いを認識できる多様性を持つことを示したランドシュタイナーの研究で用いられ、学生時代感動した重要な概念だ。

こう考えてくると、ras 阻害剤治療を受けた人は、変異型 ras 分子に自然にハプテンが結合した異物を持っていることになる。言われてみると気づくのだが、この可能性をいち早く着想し、ras 阻害剤の一つ ARS1620 をハプテンとして、抗体を作成し、ガン治療に使えることを明らかにしたのがカリフォルニア大学サンフランシスコ校のグループで、9月12日号の Cancer Cell に発表している。タイトルは「A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy(K-ras(G12C)に対する共有結合型阻害剤はMHC-Iにより提示されるペプチド上でハプテンとして働き免疫治療の標的になる)」だ。

この研究は着想が全てだ。後は、化合物が共有結合したペプチドが処理されて、MHC-I と βミクログロブリン複合体に結合して提示されることを確かめた後、抗体遺伝子を組み込んだファージライブラリーから結合力の高い抗体を選ぶ方法で、最終的に P1A4 と名付けた抗体を作成している。

この抗体は、試験管内で処理した化合物結合ペプチドだけでなく、薬剤処理したガン細胞の表面上に提示された化合物も認識することが出来る。

そして最後に P1A抗体と CD3抗体を合体させたキメラ抗T細胞を試験管内で、化合物で処理したガン細胞に加える実験でキラー活性が誘導できることを示している。

結果は以上で、まだ担ガン動物の治療に使う実験は行われていない。おそらく、これには二つの大きなハードルがあるからだろう。

まず、治療に使った化合物が体内に残っているはずで、これにより抗体の効果が中和される可能性がある。また、MHC に提示される変異型 ras ペプチドは、ガン細胞上に提示されているとしても、量は少ない。従って、この壁を乗り越えたときに初めて、素晴らしい着想が治療として実現する。私としては、この壁を乗り越えて大化けしてほしいと思う。これが出来れば、同じ手法を用いることが出来るガンは多い。

カテゴリ:論文ウォッチ

9月15日 頭が混乱するぐらい複雑な腸管での免疫系、細菌、そして栄養の関係(8月29日 Nature オンライン掲載論文)

2022年9月15日
SNSシェア

先日は腸管内に複雑な樹状細胞(DC)系が存在し、その存在が免疫を高めるか抑えるかを決めていることを示す論文を紹介した(https://aasj.jp/news/watch/20522)。そして、慶応の本田さん達により明らかにされたように、DC やT細胞は細菌叢の中の SFB と呼ばれる特殊な細菌群により調節されている。これだけでも複雑なのだが、今日紹介するコロンビア大学からの論文は、この免疫系と栄養との関わりを追求した論文で、読む側の頭をさらに混乱させるが、栄養と免疫を考える上で面白い研究だ。タイトルは「Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome(食事の中の糖により誘導される細菌叢の不均衡がメタボリック症候群を防止する免疫系を消失させる)」で、8月29日 Cell にオンライン掲載された(論文の筆頭著者の Kawano さんは慶応の内分泌内科所属になっている)。

この研究は、最初合成された高脂肪食(HFD)による肥満を抑える免疫系を特定すべく計画されている。マウスに HFD を摂取させると、Th17細胞が低下、逆にTh1細胞が上昇する。これと同時に、Th17誘導に重要とされている細菌種 SFB も消失する。

面白いことに、Th17細胞の誘導を操作したマウスを用いて同じ実験を行うと、Th17 が欠損したマウスでは、HFD によりおこる肥満と代謝異常の程度が強い。また、メタボになりやすいTh17マウスもCD4T細胞を移植することでメタボを防ぐことが出来る。一方、HFD によるTh17 低下は、SFB を直接投与することでも防ぐことが出来る。以上のことから、HFD により起こる肥満は、栄養だけでなく、腸管内で SFB が減少し、Th17 が低下することで、メタボリック症候群防御機構が低下することも要因であることを明らかにする。

では、HFD の何が Th17 低下を招いているのか?追求していくと、驚くことに原因は HFD中の脂肪そのものではなく、なんとそこに加えられた砂糖が原因になっていることがわかった。すなわち、砂糖を投与することで、SFB が減り、Th17 が減る。

以上のことは、砂糖により SFB の増殖が変化することを示すが、SFB のみを移植された無菌マウスでは砂糖の影響が全くないことから、砂糖により他の細菌が増え、結果 SFB が Th17 誘導に関われなくなる可能性を示している。そして、最終的に Erysipelotrichiaceae と呼ばれるバクテリアが増殖して、SFB を粘膜上皮から引き剥がすことで、Th17誘導能がなくなることを示している。

最後に Th17 がメタボリック症候群を抑える仕組みが問題になる。勿論全身の自然炎症を抑える役割がある可能性も捨てられないが、この研究では上皮の脂肪輸送に関わる CD36 の発現を Th17 が抑制することも示し、全身の影響だけでなく、脂肪の体内への移行を抑えることで、Th17 が肥満防止に関わることを示している。

どんどん複雑になり、頭も混乱するが、これらの結果をもとに、メタボのない、バランスの取れた免疫系の維持方法について指針を出して欲しい。

カテゴリ:論文ウォッチ

9月14日 Pääbo-Huttner コンビによる人類脳進化研究(9月9日 Science 掲載論文)

2022年9月14日
SNSシェア

チンパンジーゲノムが解読されたとき、我が国では人間とほとんど変わらないことが強調された。サル学でも、人間とサルの共通性を求める方向があるが、この方向性を私は猿の惑星型研究と呼んでいる。一方、徹底的にサルと人間の違いを突き詰める方向性も存在する。例えばネアンデルタール人ゲノム解読の Pääbo さんと同じ研究所の Thomasello さんのサル学がそれに当たる。小さな違いを際立たせることで人間を理解する方向で、私はキリスト教の自然観をとって Scala Natura 型と呼んでいる。

同じように、類人猿、旧人類、そしてホモサピエンスまでのゲノムを比較して、小さな違いを見いだし、その違いを機能的に際立たせる手法で研究を続けているのがライプチヒの Pääbo さんと、ドレスデンの Huttner チームで、おそらく最初は2015年に紹介した ARHGAP11B 遺伝子ではなかったかと思う(https://aasj.jp/news/watch/3151)。最近では、同じコンビで細胞分裂マシナリーをネアンデルタール人と現代人で比べた論文も紹介した(https://aasj.jp/news/watch/20247)。この中から浮かび上がるのは、小さな機能変化が積み重なった土台に、新しい脳機能が創発してくるといったシナリオだ。

今日紹介する Pääbo-Huttner コンビの研究もこの流れ上にあるが、これまでと比べるとこれでもかこれでもかと徹底的な実験が行われている。タイトルは「Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals(人類のTKTL1遺伝子は、現生人類の前頭新皮質の神経細胞増殖がネアンデルタール人より多いことを示唆している)」で、9月9日号の Science に掲載された。

おそらくネアンデルタール人と現生人類のゲノムで異なっている部位の精細なリストが出来ているのだと思う。その中から、脳に発現している分子の中から、今回はネアンデルタール人と現生人類でアミノ酸一つだけが異なっている、脂肪代謝と糖代謝を結びつける分子 TKTL1 に今回は焦点を当てている。Huttner さんは、神経幹細胞の増殖を研究してきた第一人者なので、この分子が radial glia と呼ばれる幹細胞の中の特に bRG で強く発現していることも、この分子を選んだ理由だと思う。まあ、神経発生のプロが選んだ分子なので、膨大な実験が行われており、結果は箇条書きで紹介する。

  1. 現生人型 TKTL1(hTKTL1) と旧人類型 TKTL1(a TKTL1) をマウス前頭葉に導入すると、hTKTL1 を導入した時のみ、radial glia のうち bRG の数が増え、bRG を起点に多くの神経細胞が生産される。
  2. フェレットを用いて同じ実験を行うと、同じように bRG が増殖、その結果、新皮質上層部の神経細胞の数が増え、脳回路の形態変化が起こる。
  3. 人間の脳オルガノイドを用いて aTKTL1 に置き換えると、bRG と神経の増殖が低下する。すなわち、hTKTL1 になることで、人間は皮質神経の数を増やすことに成功した。
  4. hTKTL1 による bRG の増殖は、脂肪代謝経路での TKTL1 の働きに依存しており、hTKTL1 は従来型より多くのアセチル CoA を合成する機能を持っている。

実際には代謝について、阻害剤を含めた詳しい検討が行われており、これまでの論文の中でも執念が感じられる。以前紹介した ARHGAP11B も代謝に関わる酵素だったし、今年紹介した KIF の話も分裂に関わる話だった。おそらくまず大事なのは、ともかく脳細胞を増やすことで、制限の中で、すこしづつ効率のいい分子を集めていくことでこれが可能になったのだろう。勿論、この研究の積み重ねがそのまま創発につながるわけではないだろう。しかし、ARHGAP11B をマーモセットに導入する実験を行うHuttner さんだ。今後、ヒト型に変化した様々な動物の脳機能の研究が示されるのだと思う。その時、猿の惑星型か Scala Natura 型かもわかるかもしれない。

カテゴリ:論文ウォッチ

9月13日 腸内細菌叢特異的 Treg 細胞誘導を指令する樹状細胞の特定(9月7日 Nature オンライン掲載論文)

2022年9月13日
SNSシェア

最近のピーナツアレルギー予防の臨床研究を見ると、腸内でどのタイプのT細胞反応を誘導するかが、アレルギー発症に重要であるかがわかる。すなわち、早くからピーナツ油を摂取させると、抑制性T細胞(Treg)を誘導することが出来、その後のアレルギーを防げる。ただ、Treg が誘導されるメカニズムについてはよくわかっていない。

昨年、Science Immunology に UC サンフランシスコから、腸管には Aire を発現する特殊な樹状細胞(DC)が存在することが発表された。Youtubeでも紹介したように、Aire は胸腺上皮に、自己抗原の動物園を形成し、トレランスを誘導するのに必須の分子だ (https://aasj.jp/news/watch/19920)。そんな分子が腸管の DC に発現しているとすると、ひょっとすると自己抗原に対する Treg の教育が行われているのではと言う可能性が浮上し、わざわざローマ神話の神 Janus という名前がつけられた。

あれから1年、9月7日、Nature に、Janus 細胞及び ILC3 が腸管内で Treg を誘導している指令細胞であることを示す論文が3編オンライン発表された。その中から、最も系がすっきりしたニューヨーク大学 Littman グループの論文を選んで紹介する。タイトルは「A RORγt + cell instructs gut microbiota-specific T reg cell differentiation(RORγt細胞が腸内細菌特異的Treg細胞の分化を指令する)」だ。

実験系をすっきりさせるために、この研究ではヘリコバクターに対するT細胞受容体トランスジェニックマウス由来T細胞を用い、この細胞をヘリコバクターが感染したマウスに移植したとき、Treg、濾胞ヘルパーT細胞(Tfh)、及び炎症性 Th17 細胞が誘導される実験系を用いている。すなわち、T細胞側は完全に一つに絞って研究が出来る。

この実験を、CD11 陽性細胞の MHC II をノックアウトしたマウスで行うと、他のT細胞は正常に誘導されるのに、全く Treg は誘導されない。すなわち、クラスII MHC がないと Treg が誘導できないことがわかる。

異なる分子をノックアウトしたマウスで同じ実験を繰り返し、RORγ 陽性、クラスII MHC 陽性、CCR7ケモカイン陽性、avβ8 インテグリン陽性の DC だけがあれば、Treg が誘導されること、ほかのT細胞にはこの細胞は必要ないことを明らかにする。また、それぞれの分子は Treg 誘導に必須であることを明らかにしている。

後は様々な実験を行い、Aire 陽性の Janus 細胞が必要なのか、ILC3 であればいいのかを検討しているが明確な結論は出ていない。Janus 細胞は Aire 発現で定義されるので、今後この遺伝子を ILC3 でノックアウトする実験が必要になるだろう。従って、結論としては、腸管内での Treg 誘導には、RORγ 陽性の ILC3 が必要十分条件であり、この存在が Treg が出来るかどうかを決めると言えるだろう。

カテゴリ:論文ウォッチ

9月12日 パーキンソン病の深部刺激を進化させる(9月7日号 Science Translational Medicine 掲載論文)

2022年9月12日
SNSシェア

現在パーキンソン病(PD)を、手足や頭の震え、筋肉が固くなる、動作が緩慢になる、そして歩行がギクシャクしてバランスが崩れる、といった症状が、黒質のドーパミン産生神経が失われることで現れる病気と伝えている。ただドーパミン分泌低下で、これらの運動症状が現れる生理学的メカニズムは簡単でないが、視床下核(STN)が一つの鍵になっていることがわかっている。例えば PD の患者さんで STN に電極を挿入し、電極周囲の電気活動を拾うと、運動時の特徴的な活動の変化を拾うことが出来、この結果、STN の深部刺激法が開発されている。

ただこの方法は、両足が別々に動くのを制御しなければならない歩行の安定を支持するのはうまくいかない。そこで、歩行時の筋肉活動と、STN に挿入する深部刺激電極での活動記録を相関させ、深部学習させることにより、PD による異常をいち早く検出して歩行を助ける深部刺激開発のためのデータを集めたのがこの研究で、9月7日号 Science Translational Medicine に掲載された。タイトルは「Principles of gait encoding in the subthalamic nucleus of people with Parkinson’s disease(パーキンソン病患者さんの視床下核の歩行のエンコードの原理)」だ。

この研究は両側の STN に深部電極を挿入した PD 患者さんが歩行するときの電極周辺のフィールド電気活動を拾って、PD の歩行異常と相関する成分があるかを徹底的に調べている。調べているのは、局所の活動で、細胞の活動ではないので、回路を明らかにすると言うより、ともかく PD 歩行異常を特異的に反映する変化を特定することが目的だ。その結果、以下の過程を STN の活動として拾えることが明らかになった。

  1. PD の障害は行動を起こすときに強く表れる。すなわち、本来無意識的・自動的な運動が、大脳皮質により邪魔されているように見える。この自動性を維持するのが足の筋肉からの固有感覚だが、固有感覚のフィードバックを反映する STN の活動を特定できる。
  2. 歩行の開始と終了を反映する STN の活動を特定できる。
  3. 両側の筋肉の協調作用を、時間的にも同期して反映する STN の活動を特定できる。
  4. PD の患者さんは小刻みな歩行になるが、大きなステップに必要な筋肉の強い力をうまく協調させるプロセスを反映する STN の活動を特定し、PD での異常を明らかにすることが出来た。
  5. 足がすくむ症状に対応する STN の活動が特定できる。

この研究では、実際には β 波と呼ばれる波長の活動を中心に、歩行に必要な STN の活動と、PD での問題を、2本の電極による局所記録と相関させたところで終わっているが、このデータを学習させた AI を用いることで、患者さんの日常生活で、脚のすくみなどの様々な異常が発生するのを60−70%の精度で予測できるようになってきている。

今後、一本の電極で数カ所の検知と刺激が可能になれば、より精度の高い予測が出来るとともに、脳のプログラムに会わせた深部刺激で、異常の発生を抑えることが可能になるのではと期待できる論文だ。

これはローザンヌ大学からの論文だが、同じローザンヌの EPFL では、脊損の患者さんを AI で歩行可能にする方法も開発されている。ローザンヌは神経変性疾患治療のメッカになるかもしれない。

カテゴリ:論文ウォッチ
2022年9月
 1234
567891011
12131415161718
19202122232425
2627282930