2017年4月10日
現役時代DNAメチル化の重要性を教えるための教材として、低濃度のダイオキシンにさらされた妊娠マウスから生まれた子供は、DNAメチル化による遺伝子抑制が外れて毛色が変化すること、この変化をメチルドナーと呼ばれるDNAメチル化反応の経路にメチル基を提供する餌を食べさせると予防することができるという論文を用いていた。
妊娠中の食べ物は胎児ゲノムのメチル化パターンを変化させるこのような例は続々見つかってきており、妊娠中に葉酸やビタミンB12などのメチルドナーの摂取を進めている機関も存在する。しかしなんであれ「過ぎたるは及ばざるが如し」で、葉酸の取りすぎは発生異常や、子供のアトピーを増加させるという報告がある、従って妊婦さんには「なるべくサプリメントを用いず、バランスの良い食事でしっかり栄養をとり、低栄養でダイエットなど考えないよう」というのが基本だろう。
これは母体の話だが、今日紹介するドイツ・ボンにある神経変性疾患研究所からの論文は、マウスモデルではあっても、お父さんがメチルドナーを取りすぎると生まれてきた子供の記憶力が低下しているという恐るべき報告で、Molecular Psychiatryオンライン版に掲載された。タイトルは「Paternal methyl-donor rich diet altered cognitive and neural functions in offspring mice(メチルドナーの多い食事を与えた父親からの子供は認知機能と神経機能が変化する)」だ。
この研究は単純でメチルドナーを多く含む餌を6週間与えた雄マウスと掛け合わせた正常メスマウスからの子供の認知機能や記憶力を定番の方法で調べるとともに、脳の遺伝子発現やDNAメチル化状態を調べている。
この時食べさせた餌には1kgあたり7.5gメチオニン、15gコリン、15gベタイン、15mg葉酸、1.5mgビタミンB12、150mg亜鉛が含まれている。このサプリメントのほとんどは、一般にもサプリとして出回っており、一部は妊婦さんにも効果があるとうたっている。特に葉酸や、ビタミンB12はメチル基を利用するために重要な代謝経路を回す働きがあり、ビタミンドリンクやエネルギードリンクにも含まれている。
結果だが、マウスで使われる定番の認知機能検査、長期記憶検査の成績がこの餌を食べた雄マウスの子供は低下している。また、海馬の脳活動を調べた検査でも、記憶に関わるテータ波の低下がみられ、回路形成に問題があることを示している。
次に脳の遺伝子発現を正常の子供と比べ、様々な遺伝子の発現が変化するとともに、カルシウムイオン濃度と膜電位に応じて開閉するカリウムチャンネル分子の発現が、メチル化により抑制されていることを突き止めている。
最後に異常が誘導された子供マウスにこのチャンネル分子遺伝子を導入すると、異常が治ることまで示している。
この研究だけでは精子形成変化から子供の海馬サーキットの異常まで連なるメカニズムは明らかでない。ただ、父親の精子形成過程で起こったエピジェネティックな変化が子供に伝わることはよく知られている事実で、メチルドナーの多い食事をとった父親の子供のDNAメチル化パターンに変化が誘導され、その中のカリウムチャンネル分子などの発現異常により子供の認知機能や記憶力が低下することは十分ありえると納得できる。
では同じことが人間でも言えるだろうか?これには長い疫学調査が必要で、すぐには結論が出ないだろう。しかし、サプリが効くことを示すには十分な臨床治験が必要だが、サプリが危ないことについては、疑いがあれば避けるということが正しいだろう。
我が国は、トクホ、トクホで、様々なサプリの効果をうたう宣伝が満ち溢れている。元気を取り戻す目的や様々な理由でサプリやエネルギードリンクを飲んでいるお父さんも多いだろう。しかしこの論文のように動物実験であっても、サプリやエネルギードリンクを飲んだ結果が子供に悪い影響を及ぼす可能性が少しでもあるなら、わざわざ金を払ってサプリやドリンクで栄養を補うことはやめたほうがいい。
2017年4月9日
DNAからRNAそしてアミノ酸と、情報が正確に写し取られて機能分子ができることで私たちの生命の恒常性は維持されている。それでも、免疫系や神経系の一部ではこの厳密なルールを少し壊してでも、偶然を取り込んで分子の多様性を生み出す必要がある。その一つのメカニズムがRNA編集という方法で、アデノシンデアミナーゼという酵素により転写後のRNAのアデノシンがイノシンに書き換えられ、翻訳時このイノシンはグアノシンとして読まれるので、遺伝子にコードされていない新しいタンパク質を作ることができる。
とはいえ、セントラルドグマを乱しかねない物騒なRNA編集はアポリポタンパク質やグルタミン酸受容体などほんの一部の分子に限られ、人間では3%近くのRNAが編集を受ける可能性を持っているが、実際に編集が確認されたのは25種類の遺伝子に限られている。
今日紹介するイスラエル・テルアビブ大学からの論文はタコやイカなどの頭足類はRNA編集を積極的に取り込むよう進化したことを示した論文で4月6日号のCellに掲載された。タイトルは「Trade-off between transcriptome plasticity and genome evolution in cephalopods(頭足類に見られるゲノム進化とトランスクリプトームの可塑性の取引)」だ。
このグループはすでにイカのほとんどのmRNAが編集を受けることを2年前に示していた。この結果の意味を探るため、この研究では2種類のタコ、2種類のイカ、オウムガイ、そしてアメフラシを取り上げ、RNA編集がどの程度起こっているのかをまず調べている。すると、アメフラシやオウムガイではほとんど見られないものの、タコ、イカでは高い頻度でA-Iの編集が見られることを明らかにしている。また、実際に翻訳されたタンパク質の配列を質量分析器で調べ、編集によりアミノ酸の変異が起こることを確認している。この結果は、タコ・イカの進化経路だけでRNA編集の利用が高まったことを示している。
面白いのは、この編集が神経系に最もよくみられることで、他の論文でも神経系の多様性に関わると考えられているプロトカドヘリンでRNA編集が高頻度で行われている。しかも、神経系で見られる編集の場合約6割がアミノ酸の変化を伴う編集が行われており、この機構を積極的に使っていることを示している。
では、RNA編集により何が起こるのか、これを調べるため編集が特定のアミノ酸で高頻度に起こるタコのカリウムチャンネルについて、元のタンパク質と編集後のタンパク質を比べ、チャンネルが開くプロセスには全く変化がないものの、編集の結果チャンネルの閉まる速度が上昇していることを示している。実際には、編集されるそれぞれのタンパク質でその機能的変化を調べる必要があるのだが、この結果から、編集が特定の新たな機能を分子に与える目的で積極的に使われていることを示している。
最後に、もし多様性を獲得するための編集の重要性が高いなら、これを維持するためゲノム自体の変異は低いはずだとあたりをつけ、編集が行われる場所のゲノムを調べると、予想通り対応する領域は進化を超えて保存されており、このことからもこれらの種にとってのゲノム編集の重要性がうかがわれる。
面白い話だが、本当はなぜタコとイカかという問題が残っている。偶然性を積極的に取り入れて形成する神経ネットワークはどんなものかぜひ知りたい。ひょっとしたら、全く新しいコンピュータの設計につながるかもしれない。
2017年4月8日
今日紹介するのは研究論文ではなく、老いに伴う眠りの障害についてのこれまでの研究をまとめたカリフォルニア大学バークレー校のグループによる総説で、4月5日号のNeuronに掲載されている。タイトルはズバリ「Sleep and human aging(眠りと人間の老化)」だ。
この総説に目が止まったのは、当然私が高齢者で、若い時と比べると眠りが大きく変化したことを感じているからだ。しかし、なかなかこのようなテーマを直接扱った総説を目にするものではない。5ページにわたって200を越すこの分野に関わる文献が集められており、この総説を書く時の著者らの意気込みがわかる。
結局今日の内容は、もっぱら「老いと眠り」の問題を感じている私のためのメモだと思ってほしい。
老いによる眠りの変化
自覚的変化として、1)早寝早起きになる、2)寝つきが悪い、3)睡眠時間が短くなる、4)何度も目がさめる、5)ちょっとしたことで起きてしまう、6)昼に眠たくなりやすい、がリストされている。個人的には1)、3),6)
が当たっているが、あとはあまり思い当たらない。
これを脳波で見ると、1)深い徐派睡眠が減る、2)浅いノンレム睡眠(NRS)が増える、3)レム睡眠(RS)とNRSのサイクルが短くなり、サイクル数も減る。
脳波では、サイクルの遅いslow wave(SW)の落ち込みが激しいが、この低下は中年から始まる。場所的には前頭皮質で最も著しい。若い人のSW睡眠は、長時間睡眠を制限された後の睡眠で起こってくる、代償的な睡眠と言われている。実際、年をとると睡眠が制限されても、その後代償的に熟睡することが減るのも、このSWの減少に関わるのだろう。
もう一つの特徴は視床と皮質をつなぐ神経回路が早いサイクルで興奮するsleep spindle(SS)が、振幅や頻度で著明に低下する。
男女差
生活のリズムが同じなので、睡眠のサイクルも夫婦で大体一致していると思っているが、なんとなく「カミさんの方が寝つきが良さそうだ」と感じている。これはまんざら間違いではなく、男の方が脳波上でのSWの減少がはっきりしている。
一方、夢を見る時間に相当するレム睡眠や、眠りの制限に対する反応の鈍化などについては男女差ははっきりしない。
とはいえ、眠りの問題を訴える人の割合ははるかに女性の方が多いらしく、なぜこんな現象が起こるのかと締めくくっている。
メカニズム
なぜ眠りの変化が起こるのかについて、以下の病理的変化が指摘されている。
1) 視索前野にあるガラニンを分泌する神経の数が年齢とともに低下し、この神経の数と眠りの異常が相関する。
2) オレキシンを発現して覚醒状態を維持する視床下部領域の細胞の低下。
3) 皮質の灰白質の量の低下。
病理的変化に加えて、覚醒睡眠のサイクルに関わるアデノシンに対する受容体の発現変化も指摘されている。寝るのを妨げると、細胞外のアデノシン濃度が上がり、睡眠を誘導するが、高齢者ではアデノシンの濃度が上がっても、それを感知する受容体の発現が低下しているため、代償的な睡眠が起こりにくい。
また、睡眠・覚醒に関わる概日周期に関わる、視覚交差の直上にある神経細胞の減少による、概日周期の支配力の現象もメカニズムとして指摘されている。
基本的には、神経細胞の減少が主要な要因になっており、SW、SSの現象の主要原因になる領域もかなり明らかになっている印象だが、結論は神経細胞を老化から守れぐらいしか言えないように思える。この総説でも、アルコールが皮質の減少に関わることが述べられているが、やはり晩酌は止められそうにない。
眠りの異常と記憶
やはり最も気になるのは、老化に伴う眠りの異常により、記憶の低下が進むかどうかだ。結論だけを言えば、これは間違いなさそうだ。もともと、眠り自体が学習能力を高め、記憶を固定する重要な機能があることがわかっている。従って、学習能力を高めるSSの低下は、起きた後での学習能力を低下させるし、記憶の固定に関わるSWの現象は、記憶を低下させる。
従って、眠りを元に戻すことができれば、記憶や学習能力が戻る可能性があるが、眠り自体が脳の器質的な変化によるなら、これも難しそうだ。
老いても寝たほうがいいのか?
年をとれば睡眠が変化するのは当たり前と思っているが、無理をして寝たほうがいいのか、自然に任せればいいのか。これについても議論されているが、どちらと結論できず、賛否両論が併記されている。
以上読んでみて、納得し、物知りになった気分にはなったが、残念ながら生活をどう改めればいいのか、結局わからずじまいで終わった。
2017年4月7日
一部の例外を除いて、発生過程ではそれぞれの細胞のゲノムは不変のままだ。しかし、この過程で何百種類もの異なる細胞が生まれ、それも体の構造と一体化してこの過程が進む。
ゲノムが変化しないということは、発生過程はもっぱらエピジェネティックな過程であることを示している。このため発生学者は1950年代の終わりにエジンバラの発生学者ウォディントンが描かせたエピジェネティックランドスケープの絵が好きだ。しかし、この絵を見せるのは一種のスタイルになってはいても、エピジェネティックな過程である発生を、エピジェネティックスから見ようとする発生学者はそれほどいなかった。ところがゲノムが解読され、全ゲノムレベルで染色体構造を解読する技術が進んで状況は変わった。
私が現役の時すでに、幹細胞分野やガン研究ではエピジェネティックランドスケープを描くことがもう当たり前になっていた。しかし、本家本元の発生学の出足は遅かったようだ。
今日紹介するスイス・バーゼルにあるミーシャー研究所からの論文は、神経から骨まで、皮膚以外のほとんどの細胞へと分化する頭部神経堤細胞(HNC)発生過程のエピジェネティックランドスケープを調べた研究で3月31日発行のScienceに掲載された。タイトルは「Gene bivalency at polycomb domains regulates cranial neural crest positional identity(頭部神経堤細胞の場所特異性はポリコム領域のバイバレンシー2より調節されている)」だ。
神経細胞や色素細胞へと分化が限定されている体幹部の神経堤細胞と比べHNCは筋肉や骨へと分化する能力があり、この細胞の移動と分化によって我々の複雑な顔が形成されていると言っていい。この研究では、神経堤細胞ができてから移動したあと、その場所に対応して異なる転写因子を発現し、異なる形態の骨や筋肉を作る過程で、どのようなエピジェネティックな変化があるのか、遺伝子発現、ATAC-seqによる染色体のオープン度、修飾ヒストンに対する抗体を用いたChip-seqを用いて、特に場所特異性的形態のプログラムを支持する転写因子遺伝子のエピジェネティックスを網羅的に解析している。
これまでの幹細胞研究から見れば特に新しさはなく、ウォディントンの好きな発生学で、しかも研究者の多いHNCの研究で、ようやくこのような研究が発表されたのかという逆の驚きを感じてしまう。おそらく、それだけエピジェネティックな状態を調べるために十分な数の細胞を胎児から調整することが難しいからだろうと思う。
この研究では、神経堤マーカーと、異なる咽頭弓の分離を組み合わせて、運命の異なるHNCを精製するのに成功している。得られたHNCの遺伝子発現は、場所特異性に関わる遺伝子だけで違うことが確認されており、なぜ異なる形態が発生するのかを研究するために最適の材料が得られていることがわかる。
網羅的解析なので、詳細は省くが、結論をまとめると次のようになるだろう。
1) 場所特異的プログラムが働いているHNCでは、発現のOn/Offに合わせて、エピジェネティックスもOn型、Off型を示しており、安定的なプログラムにエピジェネティックな調節が関わることを示している。
2) HNCが発生し、異なる咽頭弓へ移動するまでは、しかし場所特異的プログラムはRichard Youngらが幹細胞で提唱したBivalentな状態、すなわちOn型とOff型が同じヒストンに共存して、転写はOffだが、いつでもOn型の染色体へスイッチできる状態が維持されている。
3) この領域は将来の運命にかかわらず、染色体はオープン。
4) このbivalent状態はHNC発生時にすでに形成されており、これには場所特異的遺伝子調節に関わる大きな領域がポリコム遺伝子複合体によりH3K27me3型にすることで維持されている。
5) 咽頭弓で場所特異的シグナルが入ると、それにより誘導される転写因子がガイドとなって、H3K27me3マークが消失、染色体構造が完全にOn型に変わる。
ということになる。ほぼ予想通りの結果で、驚きはない。しかし、ようやく発生学でもウォディントンの予言を具体的にすることができるようになってきたと感慨を持って読んだ。
話は変わるが、ウォディントンの薫陶を受け、日本の発生学を牽引したのが岡田節人京都大学名誉教授で、私も医学部の授業をサボって講義を聞いた。この授業の思い出は今でも鮮明に脳裏に浮かぶ。もちろんその後も、CDB設立にあたっては、大きな支援をいただき、今岡田先生が設立されたJT生命誌研究館の顧問をしている。直接の弟子ではないが本当に長い御縁が続いてきた。この論文を読んでいる間じゅう、「西川くん、さいなら」と岡田節が聞こえていた。
2017年4月6日
ちょうど2週間前に、染色体の核内立体地図を書くために単一細胞レベルでHi-Cと呼ばれるゲノム領域同士の立体的な距離を測る方法を開発したケンブリッジ大学の研究を紹介したところだが(http://aasj.jp/news/watch/6648)、新しい論文がオーストリアのMolecular Biotechnology研究所からNatureに掲載されたので紹介することにした。
これまで細胞集団を使った研究からゲノム各領域が自由度の少ない決まった境界を持ったTAD構造へとしっかり折りたたまれるという印象が根付いてきたが、これほど大変な過程が一個一個の細胞でどのように起こるのか解析するため、苦労をいとわず研究が進んでいることを実感する。タイトルは「Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte to zygote transition(卵子から受精卵への分化に伴う独特のクロマチン再構成が単一核のHiC2より明らかになった)」だ。
この研究では卵子が受精により成熟する過程の染色体3次元構造が解析されている。前回紹介した論文では染色体が一本しかないES細胞を使って複雑性を落として研究していたが、この研究でも半分の染色体を相手にできる状況を利用して複雑性が上がるのを避けている。
方法は核を個別に直接チューブにとってコンタクトしている部位を結合させているが、これまでの方法と特に大きく方法を変えているわけではなく、なるべくシンプルな方法ですることに心がけている。ただ、実際にはどこでもすぐにできるというものではないだろうと想像する。
単一の核でHiCを行った場合、どことどこが接していたかのデータが、yes or noで得られることになる。すなわち中間はない。このデータをゲノムに貼り付けて、ルーピングや、相互作用の起こる境界を決めていくことになる。実際、私の頭で考えて、これまでの境界データなしに単一細胞のデータだけでどこまで境界やルーピングを決めることができるかまだしっくりこない。
そこを飛ばして結論を見ていくと次のようになる。
1) 未熟卵は全体に大きいためか、遠く離れている部位のコンタクトは少ない。
2) 得られる断片の長さの分布は未熟卵では多様で、TADと呼ばれる境界はsingle cellで見るとまだ定まっていない。
3) ただ、単一細胞のデータを集めると、これまで明らかになっていたTADに収まってくる。
4) 卵子の成熟が始まると、断片の多様性が減ってきて、コンパクトな領域に固まってきて、再構成が始まる。
5) 受精後の卵子由来、精子由来の核を別々に調べると、境界やルーピングはともに起こっているにもかかわらず、母親由来の染色体の核内分布は、核の構造に統合されていない。すなわち、ルーピングや境界によって、核内での構造化が決まるわけではない。
などが重要な結論として導かれるだろう。テクニカルな困難、また失われる断片も多いと考えると、このまま全てを鵜呑みにするわけにはいかないが、単一細胞レベルの研究が急速に進むことが期待される。面白い時代に入ったと実感する
さて、最近我が国の研究力の低下が指摘されているが、この新しい分野にはほとんど我が国の研究者のプレゼンスを見ることができない。しかしこの論文の責任著者の名前を見ると、日本の方のように思う。そのまま外挿すると、残念ながら、我が国の研究環境では「現在:目先の結果」ばかりが強調され、未来に向かって新しい可能性を探るための活発なディスカンションが行われていないことが、凋落の原因の一つであるように思える。
2017年4月5日
PD-1は、専門以外の人にも最も名前を知られた分子の一つだろう。ただ、あまりに有名なため、PD-1がどのようにT細胞の作用を抑えるのか、当然完璧にわかっていると錯覚してしまう。しかし作用機序について知り合いに聞いても、「PD-1は脱リン酸化酵素を介して、リン酸化で活性化される分子を抑制しているのだろう」以上の答えは返ってこない。
今日紹介するカリフォルニア大学サンフランシスコ校とジェネンテック社との共同論文はPD-1が抑制するシグナル経路を明らかにした論文で3月31日号のScienceに掲載された。同じ号に、全く異なる方法で同じ結論に至ったエモリー大学の論文も掲載されているが、使われている方法がプロのシグナル研究に見えたのでこの論文の方を選んだ。タイトルは「T cell costimulatory receptor CD28 is a primary target for PD-1 mediated inhibition(T細胞の副刺激分子CD28はPD−1による抑制の標的分子)」だ。
もちろんこれまでもPD-1標的分子については、T細胞受容体、CD28、ICOS、あるいはこれらの組み合わせなど、様々な結果が示されていた。ただ様々な分子が独自に機能している生きた細胞を用いた方法では特異的な分子間相互作用を抽出することは難しく、完全な結論が得られていなかった。この問題を解決するため、この研究ではPD-1の活性化と、その標的について、生きた細胞を使うのではなく、人工膜上に発現させた分子の動態を観察する方法を用いている。責任著者のMellmanもValeもこの分野のプロの仕事であることが実感できる実験だ。
詳細を省いて結論だけを述べると次のようになる。
1) PD-1はT細胞受容体により活性化されるLckチロシンキナーゼによりリン酸化される。
2) リン酸化されたPD-1は次に脱リン酸化酵素Shp2と結合することで、シグナル分子として活性化される。この時、Lckによるリン酸化が続かないとPD-1とShp2は離れる。
3) PD-1/Shp2複合体は、T細胞受容体ではなく、副刺激分子の一つでB7をリガンドにしているCD28と選択的に結合し、CD28は脱リン酸化される。このため、T細胞の増殖が低下する。
実際このシナリオが正しいかどうか、最後にT細胞株を使って、PD-1によりB7とCD28の副刺激シグナルが低下することを示している。
同時に掲載されたもう1報の論文では、PD-1抗体でT細胞を再活性化する時CD28を抑制するとPD-1抗体の効果が失われることを示し、結論としてはPD-1抑制の効果がCD28シグナル経路の再活性化であることを確認している。
この結果が正しいとすると、これまでガン細胞とT細胞のみの関係として考えてきたPD-1抗体の効果を、B7を発現する細胞も含めたより複雑な枠組みで考えることが必要になる。すなわち、B7刺激がないとPD-1抑制の効果は出ない。これにより、なぜPD-1の効く人と効かない人がいるのかについてもより詳しく解析できるようになるだろう。さらに、新しい標的や、PD-1をベースにした新しい治療法の開発も可能になる。国もPD-1の効果を予測するためのゲノム研究をスタートさせたばかりだが、5年は遅れているように思う。
この論文の結果は患者さんにとっては重要な情報になったと思うが、この分野の本家といえる日本は、研究自体ではなんとなく取り残されているのではと心配している。
2017年4月4日
通常呼吸を意識して行うことはない。延髄にある呼吸中枢が自然に吸気・呼気のサイクルを生成し横隔膜や肋間筋を動かす。さらに、呼吸中枢では意識しないでも末梢から様々な情報を集めて需要に応じた呼吸数を維持してくれる。しかし呼吸は意識して調節することもできる。例えば山登りの時意識して呼吸のリズムを取ると調子が維持できる。あるいはカッカして呼吸が早まった時、深呼吸をして呼吸を整えることもできる。面白いのは、深呼吸をすると今度は意識の方に働きかけて、カッカしていても気が落ち着くことだ。
今日紹介するスタンフォード大学からの論文はこ延髄にある呼吸中枢と、大脳の高次機能とをつなぐ回路についての研究で3月31日号のScienceに掲載された。タイトルは「Breathing control center neurons that promote arousal in mice(呼吸中枢に存在してマウスの覚醒状態を促進する神経細胞)」だ。
極めてオーソドックスな研究で、最初から呼気、吸気のサイクルを生成しているpreBötzinger complex(preBC)と呼ばれる領域に、大脳の他領域と連絡して呼吸リズムを変化させる神経細胞が存在するとあたりをつけ、preBC領域に存在するニューロンを分類するための分子標的を探索、preBC領域の細胞はカドヘリン9(Cdh9)を発現しており、この細胞をさらにDbx1受容体(DBX1)を含む様々な分子の発現で分類できることを明らかにする。
次に単一細胞の活動記録からCdh9+DBX1+細胞が吸気の前に強く興奮することを発見する。すなわち、吸気前に活動するこの細胞が大脳の高次機能と呼吸をつなぐ接点になっている可能性が高い。
そこで、詳細は省くが、Cdh9と DBX1を両方発現した細胞だけをジフテリアトキシンで除去できるようにしたマウスで、ダブルポジティブ細胞を除去してマウスの呼吸を調べ、この細胞が失われても普通の呼吸は正常に維持されるが、遅いリズムの呼吸が増えること、さらに全般的にせかせかせず静かに行動し、波長の低いデルタ波が頻回に出るようになることを観察している。
デルタ波の上昇は大脳の青班核が壊された時に起こることがわかっており、著者らはpreBCからの軸索投射を調べ、期待どおり青班核への投射を確認している。
最後に機能的実験から、Cdh9+DBX1+細胞が除去されたマウスでは、新しい環境に置かれて興奮した時見られる青班核細胞の興奮が低下することを示し、Cdh9+DBX1+細胞の投射が機能していることも示している。
以上の結果から、呼吸中枢ではリズムを形成して呼吸がコントロールされているが、このリズム形成に直接関わらないCdh9+DBX1+は、青班核へと投射して呼吸のリズムと脳全体の活動とを連結しているという結論を導いている。
最後に深呼吸について考えてみると、普通心を落ち着かせるためには様々な努力が必要だが、意識的に調節できる呼吸リズムを遅くすることで、Cdh9+DBX1+細胞の活動が抑えられ、その結果青班核を介して脳全体が落ち着く方向へ調節できるということになる。なぜ呼吸調節だけで、気持ち全体が変化するのかしっかり勉強できた論文だった。
2017年4月3日
免疫学から研究をスタートしたとはいえ、NK細胞のことはほとんど知らない。NK細胞への分化を調べた論文を1−2編書いた記憶はあるが、頭の中では一つのリンパ球分化の経路ぐらいに考えてきた。そして他の研究者と同様、NK1.1という分子マーカーをNK細胞の特定に利用したが、その分子の機能に興味を持ったことはなかった。
ところが今日紹介するカナダ、クロアチア、アメリカからの共同研究を読んで、この分子がウイルスと宿主の軍拡競争、あるいは共存戦略の主役であるとともに、NK研究がこれほど大変なものかを実感することができた。タイトルは「A viral immuneoevasin controls innate immunity by targeting prototypical natureal killer cell receptor family(ウイルスの発現しているイムノエヴェーシンはナチュラルキラー細胞受容体原型ファミリー分子を標的にして自然免疫をコントロールしている)」だ。
タイトルの中でイムノエヴェーシンとあるのは、ウイルスが発現している免疫を抑える分子のことで、この研究ではサイトメガロウイルスが発現するm12という分子について研究している。
NK細胞は平積みで売れる一般向けの本が出ているほどで、専門家以外にも馴染みが深い細胞だが、この論文を読んでみると一筋縄ではいかない大変難しい研究対象だとわかる。この研究は一つの論文にするのは惜しいぐらいの力作で、ここまでやりきるには大変な努力が必要だったろうと感心する仕事だ。
NK細胞が様々なウイルス感染に関与することはよく研究されており、それにNK1.1標識分子で知られる受容体(NKR-P1)ファミリーに属する5種類の分子が関わることが知られていた。この5種類の分子のうち3種類はNK細胞を活性化し、また2種類はNK細胞機能を低下させる。この抑制性のNKR-P1Bはほとんどの正常細胞に発現しているClr-b分子により活性化され、このおかげで正常細胞がNK細胞の攻撃を受けずに済んでいる。ところが、ウイルスが感染すると細胞からClr-bが消えてしまい、細胞がNKの標的になる。この場合、ウイルスごと細胞が消えるが、細胞内で長く活動するサイトメガロウイルスなどは、宿主となる細胞が死んでしまっては困るので、NKR-P1Bを介してNK活性を抑える分子を発現していることが知られていた。
研究ではまず抑制活性の異なるウイルスを用いて、サイトメガロウイルスが発現するNKR-P1Bリガンドが、m12と呼ばれる膜タンパク質であることを明らかにする。また、たしかにm12がNK活性を抑制することを確認している。
次に、様々なマウス系統のNKR-P1ファミリー遺伝子を発現させた細胞を使って、m12がNKR-P1Bだけでなく、1)B6,FVB両系統由来のNKR-P1Cにも反応すること、2)129, Balb/c系統由来のNKR-P1Cには反応しないこと、そしてB6,129、FVB系統のNKR-P1Aに反応することを発見する。すなわち、抑制性受容体だけでなく、活性型受容体にも反応するという矛盾する機能を兼ね備えていることを発見する。
次にm12分子とNKR-P1分子の結合の構造解析を行い、熊の手で捉まるような結合を示し、変異で様々な結合特性が生まれる可能性を確認している(実際ここまでやるかという印象があるほど徹底的に解析している)。
そしてm12分子のしめすこれらの不思議な性質がおそらくホストと、それを利用しようとするウイルスが最適の共存条件を得るため、NKR-P1受容体と、m12がともに早い速度で進化したためだと考え、これを確認する実験を行っている。
詳細は省くが、これまで分離されたサイトメガロウイルスのm12分子自体大きく変異しており、それぞれ異なるNKR-P1に対する反応性を示すことを明らかにした。すでに見てきたように、NKR-P1自体も系統で大きく変化していることから、刺激に使ったり抑制に使ったり、一番共存にいい条件を求めた進化が進んでいることをうかがわせる。
そして最後に、m12の配列の違いで、ウイルスの増殖が大きく左右されることを示している。
繰り返すが大変な労作で、NKRとウイルスについてしっかり勉強できたという読後感だ。
今後人間から分離されたサイトメガロウイルスのm12分子の多様性が明らかにされると、それに対応するNKRの多様性や臨床症状をヒトゲノム研究から抽出することが可能だろう。まちがいなく、さらに面白い共存戦略、あるいは軍拡戦略が明らかになるはずだ。
2017年4月2日
ビタミンCはその強い還元能力で体の活性酸素を抑えて、細胞を守ることで、老化を防止し、美容やがんの発生に役にたつと思っている人は多い。いかがわしいトクホが横行する中で、ビタミンC飲料は間違いなく効果が確かめられた飲料と言っていいだろう。中でも、風邪に効果があると思っている人は多いはずだ。先週Nutrientという雑誌に発表されたフィンランドのHemilaという研究者の総説によると、1日6−8gという大量のビタミンCを服用すれば確かに症状の出る期間を短縮できることはまちがいないようなので、風邪にかかったら安心して、しかし大量に飲めばいい。
ただ、もしビタミンCが細胞を酸化ストレスから守ってくれているなら、同じようにガン細胞もビタミンCに守られることになる。しかしガンの放射線や化学療法を補助する意味でビタミンCの点滴を行っているグループがあるが、これはガンを助けてしまわないのかと心配になる。
これに対し今日紹介するアイオワ大学のグループは、モデル実験と実際の治験を組み合わせた研究を行い、大量のビタミンC投与ががん細胞を選択的に叩くことを明らかにし、4月10日発行予定のCancer Cellに発表した。タイトルは「O2・- and H2O2-mediated disruption of fe metabolism causes the differential susceptibility of NSCLC and GBM cells to pharmacological ascorbate(スーパーオキシドアニオンラジカルや過酸化水素を介する鉄代謝の崩壊がビタミンCに対する非小細胞性肺がんとやグリオブラストーマ細胞の感受性を特異的にあげる)」だ。
この研究では肺がん細胞(NSCLC)やグリオブラストーマ(GBM)細胞をビタミンCと培養すると、正常細胞と比べがん細胞の細胞死が強く誘導されること、またマウスに人ガンを移植してシスプラチンと放射線で治療するときビタミンCを投与するとマウスの生存に高い効果があるという結果を説明するため、ビタミンCのこれらの細胞の効果について生化学的に解析している。
詳細は省くが結果を要約すると以下のようにまとめられる。
ガンではフリーの鉄レベルが上昇しており、これがビタミンCに働いて酸化を促すことで、さらにフリーの鉄のレベルを上昇させるサイクルが動き始める。こうして上昇を続けるフリー鉄と過酸化水素が反応すると、ハイドロオキシラジカルの産生が上昇し、細胞の複製など様々な過程を障害するというシナリオだ。
この効果は、ガンでもともと活性酸素やフリー鉄のレベルが上がっているために得られる効果で、この場合はビタミンCが活性酸素を抑えるどころか、逆にそのレベルをあげていることになる。一方、正常細胞ではフリーな鉄のレベルが低いため、細胞障害性はでないことになる。確かにガンに特異的に効果があることを納得した。
このようにメカニズムを確認した上で、この研究では少人数のガン患者さんに大量のビタミンC投与治験を行い、高い効果が得られることを示している。基礎と臨床を橋渡しした力作だと思う。
最後に付け加えておくと、ビタミンCは全て点滴で投与しており、なんと60g以上投与する必要がある。とはいえあまり強い副作用は出ないようなので、ぜひもっと多くの患者さんを使った治験が早く進むことを期待する。
2017年4月1日
何度か統合失調症に関わる論文を紹介してきたが、ほとんどその背景にあるゲノム研究だった。しかし、ゲノムは情報で、情報は物質レベルの作用に転換される必要がある。心的現象の場合、この物質レベルの作用がもう一度言葉やシンボルといった情報に転換され、それが表面に現れるため、話はより複雑になる。いずれにせよ、ゲノム情報を理解するには、やはり統合失調症の背景にある細胞レベル、そして脳回路レベルの変化を知るための研究が必要になる。
今日紹介するアイオワ大学からの論文は統合失調症で特異的に異常が見られる前頭前皮質と小脳の深部に存在する神経核の連合の異常を指標に、統合失調症の治療法開発まで視野に入れた研究でMolecular Psychiatryオンライン版に掲載された。タイトルは「Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction(小脳投射に対するデルタ波長刺激は統合失調症に関連する前頭前皮質機能異常を代償する)」だ。
この分野は全く読んだことがなく、何を読んでも面白い。統合失調症に前頭前皮質(MFC)の回路の変化が関わることは知っていたが、特に小脳の外則深部にある神経核(LCM)との連結の低下がこの異常に関わり、LCMの刺激により統合失調症の一部の症状が改善するらしい。研究の困難にもかかわらず、少しづつ理解が進んでいる印象を受けた。
この研究では、MFCとLCMの連合を、頭の中で時間を測る能力を調べることで検証できるという従来の結果に着目し、研究を始めている。驚いたことに、この時間を測るテストは、患者さんだけでなく、両親や子供のような近い親族で既に見られるらしい。
研究では統合失調症の患者さんで確かにこの課題に異常が見られることを確認するとともに、この課題を行っている時に普通の人のMFCでは見られる周期の低いデルタ波が著明に低下していることを発見する。
このデルタ波の低下が、LCNとMFCの相互作用の結果で、時間を測る能力と関わるかどうかを今度は脳の活動や連絡を自由に操作できるラットを使って調べ、LCN細胞を消失させると時間を測る能力がなくなること、そしてLCNとMFCは直接の連合がないものの強く同調していることを明らかにしている。
最後に、やはりラットモデルでMFCのドーパミン受容体をブロックした系でLCNをデルタ波長で刺激すると、MFCのデルタ波が回復することを確認している。
話はこれだけで、動物と患者さんに同じ課題を課すことで、これまで想定されてきた小脳から前頭葉への回路の不全が統合失調症に関わる可能性を明らかにするとともに、この回路を刺激することである程度症状を改善できる可能性を示唆している。
すでに小脳の刺激は患者さんに使われているようで、どの症状が改善するのか興味がある。私が付き合った何人かの統合失調症の患者さんからの乏しい経験でしかないが、患者さんが頭の中に描いている自己のイメージが、実際に感覚される身体イメージからかけ離れている気がいつもしていた。その意味で、運動を司る小脳の回路が重要だという話は妙に説得力を感じて読んだ。