過去記事一覧
AASJホームページ > 2018年 > 1月

1月21日:血液によるガンの早期診断が可能になる?(Science オンライン版掲載論文)

2018年1月21日
SNSシェア
多くのガンは、転移が起こる前に切除することで治すことができる。ただ、早期にガンを発見するためには、内視鏡、CT、PETなど時間と費用のかかる方法が必要で、多くの人間のマススクリーニングを行うのが難しかった。それでも、胃カメラなど、これを乗り越えてスクリーニングの体制が整い、成果を上げている。とはいえ、一定量の血液を取り出して、それでガンがあるかどうかの診断が可能になることが望ましい。

これまで比較的成功しているのは、前立腺癌を診断するPSA検査で、急に上昇するとガンが疑われる。ただそれでも、確定診断にはならない。実際私も昨年の夏PSAが急上昇し、前立腺癌を覚悟したが、精密検査で無罪放免になった。

今日紹介するジョンホプキンス大学からの論文は血液によるガンの早期発見を現在利用できるいくつかの方法を組み合わせて総合的にできないか調べた論文でScienceオンライン版に掲載されている。タイトルは「Detection and localization of surgically resectable cancers with multi-analyte blood test(複数の検体に分ける血液検査で外科的に対応可能なガンを発見し種類を特定する)」だ。

実際このような試みは多くの研究室で行われている。例えば、ガンの血液診断をキーワードに検索すると、一滴の血液で13種類のガンを発見できるといった落谷さんの研究を筆頭に、新聞やTV報道が並ぶ。ただ、それぞれをよく見てみると、それぞれのグループが得意の方法だけを用いて、どちらの成功率が高いかを争っている感がある。一方、今日紹介する論文は、これまで有望と考えられてきた方法を組み合わせて、しかもステージIIまでのガンを診断するという目標に絞って検査を開発している。テクノロジーを競うのではなく、患者目線に立った研究と言える。

方法自体は独自のものではないが、それぞれの方法を早期診断という目的に絞って改良を加えている。

最初に用いるのがliquid biopsyと言われる方法だが、ガンのドライバーのみに焦点を当て、これまでのガンゲノムのデータからドライバー遺伝子変異を特定しやすい、卵巣癌、直腸がん、膵臓癌、胃がん、食道がん、肺がん、乳がんの8種類に絞って検査を開発している。

実際には16遺伝子の変異を調べる61種類の断片を用い、PCRで配列を決めている。この時、一本だけの検体で行うのではなく、一つのサンプルを複数のチューブに分けて別々に増幅することで、変異が検出される確率を高めている。

次に、様々な文献から特異性の問題はあっても、ガンの早期に遊離されるタンパク質ガンマーカーをリストアップし、その中から39種類の蛋白質を免疫的に検出する方法を開発している。

これらを改良し組み合わせた新しい方法で、約1000人のステージIからIIIまでのガン患者さんの血液を調べると、診断率が一番高いのは卵巣ガンと肝臓癌で、90%を越すが、残りはだいたい70%ぐらい、最も低いのが乳がんであることがわかった。一方、ガンを持っていない正常人では800人中8人が陽性と診断され、現在フォローアップ中だ。もちろん、今後炎症や、前癌状態など幾つかの状態で偽陽性が出ないか調べる必要があるが、まずますだ。

最後に、AIを用いて、パターン解析を行い、発見したガンの種類を当てるアルゴリズムもを開発しており、ほとんどのガンで7割程度診断が可能であることを示している。

この論文には多くの施設が関わっているが、読んでみて思うのは、皆が協力して仕上げている点だ。一方,診断法の開発ですらわが国では自分の方法が他の方法より優位であることだけを強調することに努力が払われ、皆で協力することができていない点が気になる。もちろん臨床で喜んで使われる方法でになればそれでいいが、実際にはどうなのだろう。結局診断法の開発でもおそらく研究費を独占したいというモチベーションが働く構造になっているのではないだろうか。実際には大所高所から幾つかの技術を患者さんのために組織化するための指導力が、助成を提供するAMEDなどに欲しいのだが、今の助成機関の指導者にはそのような発想はないようだ。

最後に、この検査法がいくらになるかだが、500ドルで収まると聞いて安心した。
カテゴリ:論文ウォッチ

1月20日:私たちゲノム中に存在する自己化されたレトロウイルス(1月11日号Cell掲載論文)

2018年1月20日
SNSシェア
JSTのさきがけプロジェクトの研究総括をしていた時、東京医科歯科大学の石野さんには領域アドバイサーとして本当に世話になった。ほとんど欠かさず研究発表会に出席していただき、研究者にアドバイスをいただいた。また、石野さんの研究の話も聞く機会を設けることもできた。石野さんは日本のエピジェネティック研究をリードしてきた研究者の一人だが、私が聞いた話は私たちは、私たちのゲノムに飛び込んできたレトロウイルスを家畜化して、役に立つ分子として使い直しているという話で、胎盤形成を進化からエピジェネティックスまで網羅した仕事だった。

今日紹介するユタ大学からの論文は石野さんたちがレトロウイルスの家畜化が決してまれな話でないことを示す研究で1月11日号のCellに掲載された。タイトルは「The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer(神経細胞が発現するArc遺伝子はレトロトランスポゾンGagを細胞間RNAを伝達する新たな目的に転換している)」だ。

この研究が着目したのは、レトロウイルスGag分子の家畜化が疑われるArcで、ショウジョウバエや四足類の脳に発現している。驚くのは、それぞれ異なるレトロトランスポゾンから独自に進化し、神経細胞特異的分子として確立している。

この研究ではまずそれぞれのArc分子がレトロウイルスGag分子のようにウイルス粒子を形成できるか、大腸菌で作らせたArc分子を用いて調べている。予想通り、ArcもC末端を介してウイルス粒子を形成する。これはオリジンが異なるマウスでもショウジョウバエでも同じで、独自の進化でほぼ同じ機能の分子が進化した面白い例であることを示している。

ここまでわかると、実際にウイルスと同じように他の細胞に感染して、遺伝子の受け渡しをするかどうかを調べることになる。結果を箇条書きにまとめると、

1) Arcが粒子を形成するとき、N末端を介して、非特異的にRNAを取り込む。また、RNAがないと正常な粒子形成は起こらない。
2) Arc粒子は他の細胞に感染し、mRNAを伝達する、
3) 脳内でArc粒子が分泌されているのを観察でき、この粒子を用いて試験管内で神経細胞へmRNAを伝達できる。
4) 伝達されたRNAは神経細胞の活性化に応じて翻訳される。

以上の結果から、Arcはシナプスで様々なRNAを隣の神経細胞に伝達し、それが興奮依存的に翻訳されることで、シナプス可塑性に関わる可能性を提案している。今後、ウイルスの感染の標的を操作する実験から、このシナリオが正しいかどうか示されるだろう。

いずれにせよ、石野さんから聞いたレトロウイルスの家畜化はかなり広い範囲で起こっているようだが、Arcを持たない種では、どのGagを家畜化しているのかなど、面白い分野になりそうだ。
カテゴリ:論文ウォッチ

1月19日;線維形成性黒色腫はPD-1治療によく反応する。 (1月18日号Nature掲載論文)

2018年1月19日
SNSシェア
一般化学療法や、標的分子に対する治療では完全に治すことが難しいがんが、患者さんによっては根治することもあり得ることを知って、チェックポイント治療を含む新しい免疫療法に対する医師・研究者の評価は高まっている。この中で、PD-1やCTLA4に対する抗体を使うチェックポイント治療は、注射するだけでいいという簡便さから、価格が高いという難点はあるものの、急速に普及している。ただ、この治療の問題は、誰に効いて誰に効かないかを予測できない点だ。そのため、この治療の効果を予測できるバイオマーカーの探索が続き、毎週のようにトップジャーナルに論文が掲載されている。

実際先週だけでもNature Medicineにステージ4メラノーマの患者さんの末梢血リンパ球の単一細胞レベルの解析から、CD14陽性CD16陰性HLA-DR高陽性細胞とPD-1抗体の効果が相関することを示す論文が、The New England Journal of Medicineに突然変異の数と効果の相関の総説などが発表されていた。これは当然のことで、一部の患者さんに効くからと適用を拡大する従来の方法では全く能がないと言わざるをえない。

と最近の研究方向を評価した上で、それでもNatureに掲載していいのだろうかと疑問を感じたUCLAを中心にした論文を紹介する。タイトルは「High response rate to PD-1 blockade in desmoplastic melanomas(線維形成性黒色腫はPD−1阻害治療に高率に反応する)」で、今週発行のNatureに掲載されている。

この研究では病理診断を行った1058人のメラノーマ患者さんの臨床経過を掘り起こして、PD-1阻害治療に対する反応性を、desmoplastic melanoma(DM)と他のメラノーマの患者さんと比べている。結果だが、普通のメラノーマでは通常2−3割でしか見られない治療の効果が、なんと7割の人で認められる。これはすごい結果で、DMと診断できたらまずPD1阻害療法と決めて良さそうだ。 確かにこの研究から 1) DMは他のメラノーマと違って、B-RAFやRASのようなガンのドライバーが変異しておらず、化学療法が効きにくい。 2) ほとんどの患者さんが既にCTLA4治療を受けており、その上でPD-1阻害療法に転換されている。 3) NF1の変異があると、一般的に突然変異の数が多い。 など今後この治療の効果予想をするための重要なヒントが存在する。しかし、論文に示されたデータは、なぜこのガンで効きやすいのか結局明確な答えを出さないまま終わっている。要するに、メラノーマのうちDMはPD-1阻害治療が効くというタイトルにあるメッセージで終わっている。

最近Natureも臨床研究をよく取り上げるようになっているのは、当然のことだろうと思う。また、効果が高いというメッセージは患者さんへのインパクトも高く、general interestを重視する編集方針にマッチしているとは思う。しかし、この論文のように、全くメカニズムに関わる検証をスキップして現象論でいいのかは疑問に思う。

論文の書き方も少し不純なものを感じる。例えば最初のセンテンスで「DMはまれなガンで、厚い線維性の間質に囲まれ、治療の標的がなく、紫外線によるDNA障害と関連している」と書かれている。これを読むほとんどの研究者、一般読者は、普通のメラノーマよりはるかに悪いガンかという印象を持つと思うが、全体で見たときの5年生存率は他のメラノーマより良好なことが多い。

いかにこの分野が過熱しているとはいえ、Natureこそメカニズムに対して新しい結果を示した論文だけを掲載して欲しいと思う。事実、NF1と突然変異の数など、面白い問題が満載の論文であることは間違いないが、「あとはどうぞご自由に研究してください」では困る。
カテゴリ:論文ウォッチ

1月18日:マラリア原虫の侵入経路:え!こんなこともわかっていなかったのか(1月5日号Science掲載論文)

2018年1月18日
SNSシェア
ウイルスや細菌が細胞内に侵入するとき、多くの場合細胞表面上のホスト側分子と特異的に結合し、あとは様々な細胞学的過程を利用して細胞内に侵入する。例えば現在流行っているインフルエンザは、細胞表面上のシアル酸を使うし、エイズウイルスはCCR5と呼ばれるケモカイン受容体を使う。面白いのは赤痢菌で、まずマクロファージなどに貪食されてから、細胞内に侵入し、細胞内でアクチンを重合させて彗星のように細胞質内を推進して隣の細胞に感染するものもある。いずれにせよ、細胞内に侵入が必要な病原体の侵入経路の特定は、感染症研究の最も重要なステップになる。

したがって、マラリアのように最も研究の進んでいる病原体が網状赤血球に特異的に侵入する経路がわかっていないなど想像だにしていなかった。今日紹介するオーストラリア・ウォルター・エリザホール研究所からの論文はマラリア原虫P.vivaxがなんとどこにでもある鉄の細胞内輸送に関わり、またC型肝炎ウイルスをはじめとする様々なウイルスの侵入経路として使われているトランスフェリン受容体1(TfR1)と結合して細胞内に侵入することを明らかにした研究で1月5日号のScienceに掲載された。タイトルは「Transferin receptor 1 is a reticulocyte-specific receptor for plasmodium vivax(トランスフェリン受容体はマラリア原虫の受容体の一つだ)」だ。

タイトルでは、a receptorと抑えた表現になっているが、実際 DARCと呼ばれるケモカイン受容体がP.vivaと結合する侵入経路という考えが定着していたようだ。しかし、DARCの欠損した人がマラリアに感染していること、また正常赤血球にも発現しているため、何故網状赤血球だけ感染できるか説明できないことから、このグループはウイルス蛋白で網状赤血球に結合するPvRBPに結合する分子を探索していた。

結果幾つかの候補から、TfR1が特定され、生化学的、構造学的検討から、PvRBPが結合するのはTfR1に間違いないことを確認している。

そして、TfR1は赤血球系列について言えば、網状赤血球では強く発現しているが、分化が進んで赤血球になると発現がなく

なること、また、PvRBPはフリーのTfR1にも、またトランスフェリンと結合したTfR1とも安定に結合することを明らかにしている。この結果は、これまで説明がつかなかった、P vivaxが網状赤血球特異的に感染することを説明できる。

最後にP.vivaxの感染実験を行い、PvRBP2をクリスパーで欠損させると感染が起こらないこと、さらにPvRBPに対する抗体を用いると、やはり感染が防げることを示している。 研究で使われたのは私たちの現役時代の手法で、この実験がどうして今までできなかったのか不思議だが、おそらく受容体はDARCであるとする定説が、研究の妨げになっていたのだろう。ぜひこの発見が、マラリアの予防や治療に使えるよう発展することを期待したい。
カテゴリ:論文ウォッチ

1月17日:生殖器の動きを制御する神経回路形成を制御する経験と性(1月11日号Nature掲載論文)

2018年1月17日
SNSシェア
ゴカイの幼生のように、一本の神経細胞だけが、光を感じる色素細胞と、運動に関わる繊毛細胞をつなぐような稀な例もあるが、神経性の最も重要な構造学的基盤は回路形成にある。このおかげで、あらゆる内外の刺激や、記憶を連合させることが可能になり、結果として身体から独立した情報媒体・言語を可能にした。この回路で重要なのは、構造が経験により書き換えられることで、神経の可塑性として知られている現象だ。ただ、神経回路は単純な動物でも十分複雑で、可塑性を観察するには時間がかかるため、これを一本の神経細胞レベルで調べるためには工夫がいる。

今日紹介するコロンビア大学からの論文は、すべての細胞が単一細胞レベルで特定されている線虫の一本の神経を用いて可塑性の成立条件を調べた研究で、1月11日号のNatureに掲載された。タイトルは「Neurexin controls plasticity of a mature sexually dimorphic neuron(Neurexinがオスメスで機能が異なる成熟ニューロンの可塑性を調節している)」だ。

論文を読むと、線虫行動を熟知したプロが、線虫の神経系の特徴を生かして、しかし一般的な問題、可塑性の生物学にチャレンジしているのがよくわかる。

この研究が対象にしたのはDVBと名前がついた運動神経で(線虫のアトラス参照:http://www.wormatlas.org/neurons/Individual%20Neurons/DVBframeset.html)で、雌雄同体型(以後わかりやすいようメスと呼ぶ)では直腸筋肉に投射して排便を調節するが、オスではこれ以外に、受精に必要な針(SC:ペニスと考えればいい)を突き出す時に働く筋肉(PT)にも投射している神経細胞だ。オスだけで生殖時に必要なSCを動かすため、排便と同時にSC運動を調整する役割を持つと考えられ、実際両方の性で直腸を動かす筋肉への投射は共通に存在するが、DVBの神経投射標的は成長過程でオスとメスで大きく変化する。

面白いのはオスの投射パターンが完成するまでの行動を調べると、最初排便とともにSCが飛び出したのが、3日目にはこの動きが消失することで、DVBの機能を抑制すると、この動きを抑えられなくなりSCが飛び出したままになり受精がうまくいかなくなる。すなわち、DVBは最初SCの突出を誘導していたのに、後からはSC運動を抑制するニューロンに役割を変える。そして、オスとHAを一緒に飼育し生殖行動を促すことで、経験依存的にこの役割のスウィッチが完成することを確認する。

そこで、投射される側(SPCニューロンとSCを突き出す筋肉)を光遺伝学的に興奮させるようにして、DVBの投射を調べると、期待どおりSCを動かす運動によって投射が誘導されることが明らかになった。すなわち、標的の興奮により結合を強める典型的なシナプス結合の可塑性が見られることが明らかになった。

あとは線虫お得意の遺伝学を用いて、この可塑性にはDVB側で発現するneurexinと標的で発現するneuroliginが関わっており、neurexinはDVBの神経突起形成を誘導する方向に、neuroliginは抑制する方向で働き、運動によりneuroliginの発現を抑えることで、投射の可塑性が成立することを示している。

話はここまでで、パズルを完成するためにはまだまだ多くのピースをはめていく必要があるが、一本の神経レベルの投射と行動がここまで明確だと、パズルもそう遠くなく完成すると思える。

いずれにせよ、これまで頭の中で想像してきた神経可塑性の一端が細胞学的にしかも目に見える形で明らかになっているのを見ると、さすが線虫の系だと感心する。
カテゴリ:論文ウォッチ

1月16日:ガンのドライバーRasシグナルの複雑性(2月8日号Cell掲載予定論文)

2018年1月16日
SNSシェア
変異型Rasは多くのガンのドライバーとして働いていることがわかっているのに、30年以上にわたる研究でも克服できていない分子の代表だ。私自身もRasそのもの、あるいはその下流を制御できることを高らかに謳う論文をいつか目にすることができるのではと注目して毎日論文を読んでいる。確かに、これまでも有望そうな方法を開発したという論文を紹介してきたが、時間が経っても臨床に応用できたという例をほとんど知らない。

今日紹介するダナファーバーガン研究所からの論文は、変異型rasガン遺伝子のシグナル経路の複雑性とともに、Rasについてまだまだ理解できていないことが多いことを思い知らされる論文で、2月8日発行予定のCellに掲載されている。タイトルは「KRAS dimerization impacts MEK inhibitor sensitivity and concogenic activity of mutant KRAS(KRASの2量体形成がMEK阻害剤感受性と変異型KRASの発がん性に影響を及ぼす)」だ。

この研究は、変異型KEASをドライバーとするガンで、変異のない染色体から正常型のKRASが発現するとガンの増殖力が弱まる、すなわち正常型KRASが変異型KRASの活性阻害因子として働くという現象に注目し、RASの活性化には変異KRAS分子の2量体化が必要ではないかという着想から始まっている。

まずKRASシグナルだけを抜き出して調べるため、KRAS以外のRASファミリー分子が欠損する細胞株を樹立、この細胞で変異型、正常型KRASが共存する細胞と、変異型だけが存在する細胞で増殖能を比べると、確かに正常型KRASが変異型の活性を抑える働きがある。生化学的にもGTP結合RASが上昇し、下流のリン酸化ERKも高まる。

ところが同じ細胞で、KRAS下流で活性化されるMEK阻害剤の効果を調べたところ、今度は正常KRASが存在しているときのほうが阻害剤の効果が落ちる。すなわち正常型KRASと2量体を作ると、変異KRASシグナルが低下するが、逆に下流のMEK経路は阻害剤に抵抗性を持ってしまうという2面性が明らかになった。残念ながら、MEK阻害剤の抵抗性の原因については解析は中途半端で終わっているが、治療を考える上で極めて重要な結果だ。

次に2量体が実際に形成されることでこのシグナル変化が生まれているのかを知るため、構造解析から2量体形成に必要な部位を特定し、この部位を変異させると、正常型のKRASの増殖抑制効果が消失することを確認している。すなわち、変異型KRASは2量体を形成することで活性化するが、正常型が変異型同士の2両体形成を阻害することを明らかにした。また、2量体が形成できないKRASではMEK阻害剤の効果を抑えることもない。

最後に、2量体が形成できない変異型KRASだけが存在する細胞では、下流のMEKの活性化も強く低下していることを明らかにし、下流シグナルの活性化には2量体系性が必須であることも示している。

実験がごちゃごちゃして、筋を追うのに苦労するが、要するに少なくとも変異型KRASの活性化には2量体形成が必須で、これにより下流のMEK経路が活性化されることは明確だ。さらに、2量体形成は、下流のMEK活性化に必須だが、 この活性化された2量体KRASを核として、MEK経路にポジティブ、ネガティブ効果のある複雑な分子複合体が統合され、この複合体の安定性がKRASの組み合わせで微妙に変化するため、一見矛盾するような阻害剤の効果の増減が生まれるというシナリオを提案している。

以上の結果は、まず変異型KRASの2量体形成過程は創薬ターゲットになる可能性があることを示すとともに、KRASが活性化しているからと闇雲にMEK阻害剤を使うことは意味がなく、細胞内に存在するKRASのゲノタイプを詳しく調べて治療戦略を立てることが重要であることを示している。

私は素人でこれまでの研究について把握できていないが、変異型RAS分子の2量体形成の必要性がこの研究で初めて明らかになったと聞いて、これほど研究の厚みのある分子でもわかっていないことがあるのかと驚くとともに、RAS シグナルの奥の深さに感銘すら覚えた。
カテゴリ:論文ウォッチ

1月15日:ハイブリッドの生物学2題(Science及びNature発行予定論文)

2018年1月15日
SNSシェア
今ハイブリッドというと車のことになるが、家庭に車があることなど考えもできなかった私たちの子供の頃は、ハイブリッドというともっぱら交雑で新しい動物を作ることだった。代表的なものはウマとロバを交雑させたラバで、動物園ではライオンとトラの交雑種ライガーやライオンとヒョウの交雑種のレオポンなるものも話題を呼んでいた記憶がある。交雑はもちろん自然にも起こるが、異種間の交雑で生まれた動物は繁殖力がないため、生物学的には稀な例外を除いて対象になって来なかった。しかしよく考えてみると、私たちのゲノムに今も残るネアンデルタールやデニソーワ人遺伝子も、言ってみればこの交雑の結果で、実際には生物や人間の進化を考える上で重要な研究対象として再認識する必要があると思う。

今日紹介する最初の論文はスウェーデン・ウプサラ大学からで、ガラパゴス諸島のダーウィンフィンチを対象に交雑が早い進化を誘導することを示した研究で、我々ホモサピエンスの進化ともオーバーラップする面白い研究だ。タイトルは「Rapid hybrid speciation in Darwin’s finces(ダーウィンフィンチの早い交雑種文化)」で、Scienceオンライン版に掲載された。

ダーウィン進化論の形成に重要なヒントを与えた鳥として、彼の名前が付けられているガラパゴス諸島に生息するダーウィンフィンチは、各島の環境に合わせて独自の形態進化を遂げたことで有名で、生物学者の心の故郷とも言える鳥だ。私も初めてガラパゴスに降り立った時、空港から出て最初に見た鳥がフィンチだったので感激し、思わずシャッターを切っていた。

フィンチに関しては移動距離から、異なる島の間で交雑が行われることはほとんどないと考えられてきた。この研究のすごいのはサンタクルス島の近くのダフネ島(くちばしの小さなfortisが固有種)に100km離れたエスパニョーラ島から飛来したくちばしの大きなconirostris種が交雑し、その後6代にわたって近親間での交雑を繰り返し、最終的に現在40羽近くに達したファミリーを30年にわたって追跡し続け、サンプルを収集したことに尽きる。フィンチのコホート研究と言えるが、この気の長さはそう真似できることではない。

詳細を省いて結論を急ぐと、全く形質が異なるオスと交雑して新しい遺伝子が導入された後、世代を追うごとにくちばしの大きくて深い、体がfortisより大きめの新しい種が生まれつつあるという話だ。世代が進むごとにくちばしが大きくなっていることから、島にある固い実を食べる能力が生殖優位性として働く自然選択を目にすることができたと結論している。

おそらく、他のfortisと交雑が見られないことから、一種の種分化が進んだと考えているようだが、本当に生殖不可能かどうか確かめられているわけではない。

他にも、くちばしの形態を決める遺伝子についても候補を特定しているが、今後の研究が必要だ。ただ、ガラパゴスの生物を自由に操作することは許されないと思うので、このまま丹念にコホート研究と、他の種との比較を続けることになるだろう。

ともかく、30年この子孫を観察し続け、サンプルを残していたおかげで、ゲノム時代の到来を最大限生かすことができたという研究だ。今後の発展が楽しみな研究だと思う。

今日紹介するもう一つの論文はカリフォルニア大学バークレー校からで、実験に用いられるアフリカツメガエルのゲノムが解読された後どんな研究が行われているのかの一端を垣間見ることができる研究でNatureオンライン版に掲載された。タイトルは「Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus(アフリカツメガエルの交雑がもたらす生存不能の原因はオス側の染色体の欠失に伴う代謝クライシスに起因する)」だ。

昨年アフリカツメガエルゲノムが解読された結果、X.lavisは異なる種の染色体が4媒体のまま維持されている異質4倍体で、2倍体20本の染色体を持つX.tropicalisから約5000万年前に分離したことがわかったことだ。このように、ゲノムとしては似ていても染色体数が全く異なる場合、交雑させてできた子孫が維持されることは難しい。さらに、lavisとtropicalisの組み合わせでは、lavisがメス・tropicalisオスの場合は発生するが、逆でlavisの精子を受精させたtropicalisの卵は原腸貫入が起こる前に細胞が死んでしまうことがわかっている。

この交雑の結果、胚が死んでしまう原因を探ったのがこの研究で、これも詳細を省いて結論だけを急ぐと以下のようになるだろう。

Lavisは複雑な染色体構成を維持するため、染色体の分離に関わるセントロメア形成に独自の進化を遂げてしまったため、toropicalis卵の細胞質内では、特定の染色体の分離がうまくいかず、染色体が失われる。こうして常に特定の染色体が失われることで、代謝のアンバランスが生じて細胞が死ぬという話だ。

結局、tropicalisの細胞質でなぜ一部の染色体のみ動原体が形成できないのという最も面白い問題が課題として残ったままになっているのは残念だが、Lavisという交雑でできた種としてアフリカツメガエルの再登場を予感させる論文だった。
カテゴリ:論文ウォッチ

1月14日:欧米型の食事は自然免疫をリプログラムする(1月11日号Cell掲載論文)

2018年1月14日
SNSシェア
着想も驚くほどではなく、なんとなくやってみようと進めた研究の結果が予想以上で、しかも一般市民の興味を惹く場合は、運良くトップジャーナルに掲載されることがある。レビューを通過するにはある程度の幸運が必要だが、加えてシナリオの骨子がしっかりしていることと、インパクトの高いタイトルをつける必要になる。

今日紹介するドイツ・ボン大学からの論文はまさにそんな例で、この論文だけを読んだ後は良くレビューを通ったなと思ったが1月11日号のCellに掲載されている。まずこの決定にタイトル「Western diet triggers NLRP3-dependent innate immune reprogramming(欧米型の食事はNLRP3を介して自然免疫をリプログラムする)」は間違いなく影響しているだろう。おそらく高脂肪高カロリー食と言わずにタイトルにあるようにWestern Dietが編集者の気持ちを動かしたように思う。

もともと、高カロリー、高脂肪食により動脈硬化が起こるが、このプロセスを一種の炎症として捉えることは普通の話で、新しいことではない。この研究も、動脈硬化を起こすLdl受容体(Ldlr)が欠損したマウスに、高脂肪、高カロリーの欧米型(WD)を与え、通常の餌を与えたマウスと、炎症に関わる血液細胞を比べ、最終的に白血球とマクロファージに分化できる前駆細胞レベルで、細胞のエピジェネティックな状態が炎症型に変化したことを示している。 自然免疫システムは、感染によりリプログラムされることが知られており、リプログラム自体は特に驚くほどではないが、高コレステロールが続くと感染と同じことが起こり、4週間WDをとり続けるだけで、あとは正常食に戻しても遺伝子発現のパターン、すなわちリプログラムされたエピジェネティックな状態が元に戻らないという結果は確かにインパクトがある。しかしこの研究では、血液幹細胞から炎症型の白血球が作り続けられることは示せているが、なぜリプログラムがWDで進むかははっきりしない。

幸い同じ号にやはりオランダ・ナイメーヘン大学のグループが、コレステロール合成経路が上昇するだけで自然免疫をリプログラムできるという論文を報告しており、この研究はリプログラムに関するメカニズムを気にせず論文にできたのもラッキーだったと言える。というか、みんなで申し合わせていたのかもしれない。

両者を合わせたシナリオを私なりにまとめると、WDによりコレステロール合成が高まると、顆粒球系の前駆細胞の遺伝子発現パターンがリプログラムされ、WDをやめても炎症型の白血球が作り続けられる。このリプログラミングにはコレステロール代謝だけでなく、IL-1Rも関わっており、この経路をブロックすると顆粒球のリプログラムが抑えられる。また、自然免疫の引き金になるインフラゾームの活性化に関わるNLRP3をノックアウトすると、WDを摂取しても自然免疫は高まらないことから、コレステロール代謝だけでなく、独立した炎症の活性化が必要になると解釈できる。

もちろん、この自然免疫のリプログラミングが動脈硬化につながるかどうかは、これまでの証拠を合わせて結論しているにすぎないが、動脈硬化の原因が炎症だとすると、引き金に関わるメカニズムが明らかになったことになる。しかし、これらを治療標的として創薬するかどうか難しいところだろう。

実際には、この2編の論文に加えて、グルカゴンで血液幹細胞がリプログラムされるという話も掲載されており、全部読むとなるほどと納得出来る話だが、やはり「西欧型食事」というタイトルをつけたこの論文が一番読者には効果がある。

個人的には、一旦リプログラムされるともう元に戻らないのかが気になると同時に、食事の話で腸内細菌叢がまったく触れられもしない点に新鮮さを感じた。
カテゴリ:論文ウォッチ

1月13日:実用段階に入った遺伝子治療(1月12日発行Science掲載総説)

2018年1月13日
SNSシェア
これまで何度も強調しているように、この数年遺伝子治療が信頼できる治療法として実用段階に入ったことは間違いがない。2017年のサイエンストップニュースでほとんどの雑誌が脊髄性筋萎縮症の遺伝子治療を挙げていたし、変異遺伝子が特定されている遺伝疾患は言うに及ばず、特定の遺伝子変異が認められないパーキンソン病でも遺伝子治療の治験が進んでいる。

今日紹介するNIHを始めとする遺伝子治療を進めてきたグループ(我が国では東大の小澤さんが共著者になっている)による現状報告は、ここ数年論文を読みながら私が持った印象に極めて近く、紹介することにした。タイトルは 「Gene therapy comes of age(遺伝子治療の時期が到来した)」で、今週発行のScienceに掲載された。以下にその内容を紹介する。

歴史
私自身は血液発生を研究していたこともあり、1980年後半にはレトロウイルスによる遺伝子導入は当たり前のように利用しており、この技術が臨床応用されるのも時間の問題と考えていた。実際、1990年代にNIHを中心に様々な遺伝子治療が試みられ、効果がほとんど見られなかったどころか、死亡例まで出る惨憺たる結果に終わった。
ただ、コンセプトが明確な可能性は決して廃れることはない。その後もう一度実験室に問題が持ち帰られ、新しいベクターや、遺伝子編集などの技術が開発されることで、この10年に目をみはる成果を上げ始めている。

技術
現在遺伝子治療に用いられる代表的ベクターは、レトロウイルスと、アデノ随伴ウイルス(AAV)の2種類と言える。前者はホストゲノムに組み込まれ、後者は組み込まれることがないベクターとして開発されている。

レトロウイルスベクター
最初の世代のγレトロウイルスベクターは遺伝子調節領域に組み込まれやすく、治療後の白血病の発生など問題が多かった。その後、レンティウイルスベクター、やスピューマウイルスベクターなどが開発され、特にレンティウイルスは遺伝子のコーディング領域に導入される確率が高く、導入効率も高いことで最もよく利用されるようになった。例えば初期のiPSはこの技術で樹立された。さらに、ウイルスのエンハンサー活性を自滅させるデザインが用いられるようになり、臨床治験に利用されている。レンチウイルスでの遺伝子治療が最も注目されているのは、T細胞にガンを殺すキメラ受容体を導入するCAR-T治療だが、タラセミアの治療などにも応用が始まっている。

アデノ随伴ウイルス(AAV)
1990年代にAAVを用いた遺伝子導入で、遺伝子発現が長期に続くことがわかり、急速に開発が進んだ。特に血友病の遺伝子治療では、静脈注射により肝臓に感染する率が高いことがわかり、凝固因子を10%近くにまで回復させ、その状態を長期間維持できることが明らかになっている。問題は、ウイルスに対する抗体やT細胞による不活化で、まだ決め手はない。

遺伝子編集
我が国ではもっぱらクリスパーだけが問題になっているが、他の方法(ZFNやTALE)を使う方法が着実に進展しており、エイズ患者さんのT細胞にウイルス感染に抵抗性を付与する(CCR5 不活化)やCAR-Tをなど臨床治験が進んでいるものも多い。ただ、将来はクリスパーが中心になることは間違いない。オフターゲットの切断など様々な問題が指摘されるが、iPSと同じで、重要な技術の問題は必ず解決される。体細胞遺伝子治療が始まる可能性は高く、中国ではすでに9治験が登録されているらしい。
もちろん胚操作に進み、倫理的問題が生まれる可能性があるが、ここでは体細胞への遺伝子治療に限って紹介する。

ウイルスベクターを注射する遺伝子治療
ウイルスを注射して遺伝子が導入できれば一番簡単だが、目的以外の臓器にトラップされるなど様々な問題がある。ただ、肝臓、眼、神経系では様々な問題が克服され、前進しつつある。

肝臓を標的にする遺伝子治療
最も成功しているのが、第9凝固因子遺伝子を導入する血友病の治療で、大量の分子を長期に生産し続けるためには肝臓が最適な臓器であることはまちがいなく、他の凝固因子も含め着実な前進がみられる。しかしすべての治験で、ウイルスに対する免疫反応が問題として記載され、この解決が今後最大の課題といえる。


視力低下につながる様々な遺伝子異常が知られており、遺伝子治療の可能性がある。これまで最も研究が進んでいるのがRPE65遺伝子欠損の患者さんで、アデノ随伴ウイルスベクターを用いて遺伝子を直接注入する方法を用いた最近の無作為化研究で、効果が確認された。この結果に励まされて、現在レーバー病など様々な遺伝子疾患の治験が進められている。

神経・筋肉
治験が進んでいるのは、パーキンソン病と脊髄性筋萎縮症と言える。すでにこのブログでも紹介したように、ドーパミン合成に必要な遺伝子を再構成する遺伝子治療のi/II相治験が行われ、期待が持てる結果が出ている。しかし、最も成功したのが、スプライシングをアンチセンスRNAで制御する脊髄性筋萎縮症の治療で、昨年の最大の医学トピックとして選ばれている。

試験管内での遺伝子改変
レトロウイルスを用いた免疫不全症の治療が最も進んでおり、γレトロウイルスを用いる最初のバージョンで白血病が多発した反省を受け、現在ではレンチウイルスを用いる新しい方法が用いられ、成果を収めている。血液幹細胞を標的にする遺伝子治療は、他にも様々な疾患に適用可能で、現在タラセミアの遺伝子治療国際治験が進行している。タラセミアについては、今後遺伝子編集の標的として研究が進むと予想できる。

CAR-T
レンチウイルスベクターを用いてキメラ遺伝子を患者さんのリンパ球に導入する方法はFDAに認可された治療として昨年から利用が始まったが、このCAR-Tには他にも様々な技術が試されている。一つの方向は、現在標的として用いられているCD19に加えて、他のマーカーに対する抗体を用いて骨髄性白血病や、固形癌を治療する方向性の研究で、もう一つの方向は患者さん本人のT細胞を用いるのではなく、ホストに対する反応は起こらないが、ガンに対しては反応できる、すべての患者さんに対応できるT細胞の開発だ。どちらも臨床応用はかなり近いところにあると言える。

以上が総説の内容だが、遺伝子治療実用化が現実になりつつあるのがよくわかってもらえたと思う。しかし問題もある。もともと遺伝子治療は、原理的にも個人用の治療が設計できる方法として期待され、またその方向で助成も行われてきた。しかし最近実用化された遺伝子治療は、あまりに高価で、実際の患者さんには手が出ないと言う問題がある。この問題を解決しない限り、おそらく遺伝子治療の普及はないだろう。規制をどうするのかも含め、早期の議論が必要だと思う。
カテゴリ:論文ウォッチ

1月12日:アルコールは本当にDNA障害を介して発がんに関わるのか?(1月11日号Nature掲載論文)

2018年1月12日
SNSシェア
最近Newsweek日本版に「アルコールとガンの関係が明らかに」と題した、アルコールがあたかも発がんの張本人のような書き方をしている記事が出ている(https://www.newsweekjapan.jp/stories/world/2018/01/dna2.php)。Facebookでシェアされていたので気づいたのだが、記事を読んでみると、確かに見出しはセンセーショナルだが、読んでみるとアルコールでハイドロゲネース(ADH2)の欠損した動物ではアルコール摂取によりDNA切断が起こるという話が紹介されており、見出しほどのインパクトはない。しかし、ADH2欠損がガンのリスク因子であることならとうの昔にわかっていることで、簡単にNatureが掲載するはずはないと思って昨日出版された論文を読んでみた。

英国医学協会の研究所からの論文で、タイトルは「Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells(アルコールと内因性のアルデヒドが染色体を障害し幹細胞の突然変異を誘発する)」だ。

確かにタイトルはNewsweekが報道する内容に近い。しかし論文を読んでいくと最初に世界には5億人ものADH2変異がある人がいるのに、アルデヒドで起こると予想される異常がほとんど問題になっているのは不思議だという話から始まっている。実際、ADHが欠損して内因性のアルデヒドが細胞内に発生してしまうと、DNAへの塩基の付加が起こったり、DNAとタンパク質が架橋されたり、様々な異常が起こると予想される。となると、この研究の狙いは、アルデヒドにより起こるDNA障害を修復しているシステムを明らかにすることであることがようやくわかる。逆に、アルコールを処理しきれないとアルデヒドができてDNAが障害されるが、私たちはそれをしっかり修復するメカニズムを持っていることを知り、酒好きの私にとっては逆に安心できる論文だった。

この研究では、ADH2欠損マウスを、修復機構が欠損したマウスと掛け合わせ、アルデヒドによるDNAが修復される過程を明らかにしようとしている。まず最初に掛け合わせたのが、ファンコニ貧血の原因遺伝子であるFancd2欠損マウスで、とADH2遺伝子両方が欠損したマウスを作成して、DNA複製依存的にDNAを切断、組み換えによって修復するFancd2型修復メカニズムが、アルデヒドによるDNA障害の修復にどの程度関わるかを調べている。

  ADH2/Facd2欠損マウスの腹腔にアルコールを直接注射すると、期待通りDNA障害が修復されず、染色体異状を持つ細胞が増加、最終的に血液ができなくなりマウスは死亡する。すなわち、アルデヒドによるDNA障害の修復にFancd2が関わる修復機構が中心的役割を果たしていることがわかる。

さらに、アルコールに暴露された血液幹細胞の骨髄再構成能力を、単一幹細胞移植を用いて調べ、造血能がほとんどの幹細胞で失われていること、そしてこれが各細胞のゲノムに多くの変異が蓄積する結果であることを確認している。

  次に2重鎖切断されたDNAの修復に、組み換え以外の断端修復も使われている可能性についても調べ、Fancd2が欠損する血液細胞では、それを補うようにKu70が関わる断端修復が起こることを示している。
さらに、p53の変異により、チェックポイントが働かなくすると造血幹細胞数は正常化することを示しているが、何かとってつけたような実験で、ほとんど詳しい解析はできていいないので紹介はやめる。

まとめると、アルデヒドはDNA障害を起こすが、2重の修復機構で問題が起こらないようにしており、最も重要な修復系はFancd2のかかわるDNA切断と相同組み換えを用いる修復機構であるという結論だ。

いずれにせよ、この研究を引き合いにアルコールはDNA切断すると報道するのは、間違いではないが、ちょっと脅かしすぎだと思った。
カテゴリ:論文ウォッチ
2018年1月
1234567
891011121314
15161718192021
22232425262728
293031