相分離についてはビデオも含めて取り上げてきたが、今日紹介するドイツ・ベルリンにあるシャリテ医科大学を中心とする国際グループからの論文は、突然変異により起こったフレームシフトで生じた分子構造の変化が、核内での総分離特質を変化させた結果、変異した分子機能だけからは考えられない発達異常を発生させることを証明した研究で、2月8日号 Nature にオンライン掲載された。タイトルは「Aberrant phase separation and nucleolar dysfunction in rare genetic diseases(異常な相分離と核小体の機能不全が稀な遺伝病に見られる)」だ。
この研究は短指趾骨粗鬆症-多指-脛骨欠損/低形成症候群(BPTA)と呼ばれる舌を噛みそうな名前の極めて稀な遺伝疾患の遺伝子異常を探索することから始まっている。5名の BPTA は、全て両親には見られず、本人だけに見られる de novo変異による発達異常で、名前の骨格の異常が際立っている。その変異を特定すると、片方の HMGB1遺伝子のC末でフレームシフト変異が起こり、C末の構造が大きく変化し、チャージが逆転していることを発見する。
HMGB1 遺伝子はクロマチンの安定化に関わる遺伝子で、これまで知られている突然変異は、DNA結合に関わる HMGボックス内での変異で、さまざまな発達異常がおこるが、骨格系の発達異常はほとんど記載されていない。したがって、BPTAに特徴的な変異は、単純な分子機能欠損というよりさらに複雑なメカニズムが働いていることを示唆している。
これまでの研究で、核内ではさまざまな相分離により分子集団が特定の場所に濃縮することで、転写の効率が調節されていることが知られている。そこで、BPTAの変異による C 末変化が、相分離によるこの分子の局在を変化させているのではと着想し、分子自体の相分離活性を調べると、変異により相分離活性が高まることがわかる。
次に、核内に存在する他の相分離分子との相性を調べると、正常分子ではエンハンサー・プロモーター複合相分離体と相性が良いが、変異体になると核小体の粒状複合体(リボゾームRNA など)の相分離体に親和性を示すようになる。
この結果をさらに生きた細胞内で調べると、正常分子は核内全体に分布するが、突然変異分子は核小体内に存在するリボゾームRNA が集まる相分離体に強く濃縮することを発見する。
以上のことから、HMGB1変異は、HMGB1 本来の機能より、相分離特性の変化により、分子が核小体の粒状コンパートメントへ分布してしまい、リボゾーム合成に影響することで、細胞機能の異常が起こったと考えられる。
これを確かめるため、変異HMGB1 を発現した細胞でのリボゾーム合成を調べると、リボゾームの機能不全による翻訳の障害が起こることを確認している。
以上が BPTA解析から得られた結果で、核内因子での相分離による局在の調節は、その機能のために必須の条件で、これが狂うと、その分子の機能だけでなく、他の分子の機能にも影響して複雑な形質につながることがよくわかった。
この論文はここで終わらず、さらにデータベースからこのような相分離異常を示す変異体の検索を行い、少なくとも101個の変異が、同じ相分離異常につながる変異であることを突き止めている。
その一部を実際の細胞で調べると、今回 HMGB1 で見られたのと同じような相分離異常を示すことが示され、これまで記載された発達異常を相分離の観点から見直すことの重要性を示している。相分離も当たり前の話になっている研究スピードの速さに驚く。