2021年2月6日
膵臓ガンは現在もなお治療が難しいガンの一つだが、発ガンに関わる遺伝子についていえば、お手本の様なガンで、ほとんどがrasのgain of function変異をドライバーとして、p53のloss of function変異によりそれがプロモートされている。ただ、なぜ膵臓ガンだけこれほど予後が悪いのかほとんど理解できていない。
今日紹介するスローン・ケッタリングガン研究センターからの論文は、発ガン時に組織障害によるエピジェネティック変化が重なることが、膵臓ガンをここまで悪性にしている一つの要因である可能性について追求した研究で2月3日Natureにオンライン位掲載された。タイトルは「A gene–environment-induced epigenetic program initiates tumorigenesis(環境により誘導されるエピジェネティックプログラムの一つの遺伝子が発ガンを開始させる)」だ。
この研究では最初から膵臓の腺房細胞のエピジェネティック状態が組織障害によって変化し、これがras遺伝子変異と協調して膵臓ガンを発生させると仮説を立て、K-ras変異と組織障害を様々に組み合わせて変化させた膵臓の上皮細胞の染色体構造を、開いた染色体構造を調べるATAC-seqを用いて調べている。
結果だが、膵臓炎を誘導するcaerulein投与で、腺房細胞のクロマチンは大きく変化するが、これは膵臓ガンの染色体の示す染色体変化とは全く異なる。しかし、K-ras の発現と合わさると、ほとんど膵臓ガンに近くなるので、膵臓ガン発生には組織障害によるエピジェネティックな変化が大きく寄与しているという結論だ。
次にこうして誘導されるクロマチン変化の性質を比べる目的で、上皮細胞特異的に開いたクロマチンに結合してエンハンサーの効果を助けるBRD4をノックアウトしたときに起こる変化と比較し、組織障害やK-rasで誘導される染色体変化が、正常のプログラムがBRD4ノックアウトにより障害されて起こる染色体変化とは全く異なることを確認している。
以上の結果は、組織障害によりクロマチン構造の変化が起こったとき、ras変異が入ると、これがさらに新しいクロマチン変化を誘導して、通常なら元に戻る変化をガン型のクロマチンへ引っ張っていくことを示唆している。例えば、新しいクロマチン変化で発現した転写因子が、ras変異によるクロマチン変化で、普段なら結合できない場所に結合して、足し算以上の変化を誘導するといったイメージだ。実際、発現した遺伝子の調節領域を調べ、この過程が実際に起こっていることを確認している。また、single cell RNA seqを用いて、細胞レベルで転写のリプログラムが進んでいることを確認している。
最後に組織障害とK-rasをつなぐ細胞外因子を探索して、膵臓ガンで発現が高く、さらに組織障害でも誘導されるサイトカインとしてIL33を特定している。そして、K-ras発ガン実験系で、IL33が障害を誘導する代わりになることを実験的に明らかにしている。
話はこれだけだが、組織障害を媒介するサイトカインが発見されたのは重要だと思う。また、組織障害によるエピジェネティック変化がこれほど重要だとすると、K-ras/p53変異が揃った膵臓ガンと例えば直腸ガンのクロマチン状態を調べることは、膵臓ガンの悪性度を知るための重要なヒントになる様な気がする。もちろん細胞での発ガンへのIL33の効果も知りたい。さらに、周りの組織も障害を繰り返すことで当然変化することから、膵臓ガンで線維芽細胞反応が強い理由も、同じ様なクロマチン変化が起こった結果かもしれない。膵臓ガン研究の将来を開く発見になる様な気がする。
この論文を読むと、エピジェネティック変化の研究も道具が揃ってかなり精度が高くなってきた。ぜひ膵臓ガンの新しい治療戦略に繋がって欲しいと期待している。
2021年2月5日
昨日に続いて、3月3日号のNeuronに掲載された、人間の脳回路についての研究を紹介することにした。今日の対象は、人間の言語機能を支える脳ネットワークの構築がアカゲザルにも存在するのか、同じ実験方法を用いて調べた研究で、英国のニューキャッスル大学とアイオワ大学の共同研究だ。タイトルは「Common fronto-temporal effective connectivity in humans and monkeys (人とサルに共通の前頭-側頭回路結合)」だ。
耳が聞こえないニカラグアのストリートチルドレンに自然発生した手話言語は、人間が集まれば自然に言語を発生させる能力が私たちの脳に存在することを示している。この言語を話す能力がホモサピエンスで進化した鍵になる回路やゲノムの差は何か、21世紀最大の課題の一つだろう。
言語理解に関わる基本回路の一つは、耳から入ってきた音を拾う聴覚野、有名なBrocaの研究から明らかになった腹側側頭前頭皮質領域(ブロードマン44、45)とそれに接する前頭弁蓋、そして陳述記憶に関わる内側側頭葉の海馬と傍海馬回のネットワークだが、解剖学的、あるいはMRIを用いた研究から同じ様な回路が猿にも存在することは分かっている。
この回路をより機能的な方法でヒトとサルで測定して比べようとしたのがこの研究だが、今回初めて耳にしたes-fMRIという方法を用いている。原理は単純で、特定の部位に加えた電気刺激の影響をfMRIで調べるという話だが、MRIについて少しでも知っているものにとっては驚きの技術だ。
一般の方でもMRI検査には身につけている金属を全て外す必要があることは聞いたことがあると思う。超磁場を体に当てるのだから当然だが、そんなMRIを電気刺激をしながら実行できると聞くだけで驚く。実際には、てんかん発生部位を調べるクラスター電極を埋めた患者さんで、この電極から電気刺激を入れて、それにより活動が誘発できる脳部位をfMRIで調べている。MRIの制限を考えると、大きなイノベーションが知らないところで起こっていた。
研究では、サルと人間で聴覚野から電気刺激を加え、それに対する反応がどこで見られるかを調べている。結論は明瞭で、サルでも人間でも、聴覚野から言語処理に関わる、腹側側頭前頭皮質、前頭弁蓋、そして海馬や傍海馬回への結合が同じ様に見られ、ヒトとサルの違いは、左右両側での反応の非対称性が人でだけ見られるという結果だ。
今回対象となったヒトの一部では広い範囲にクラスター電極が埋められているので、es-fMRIの結果を、電気刺激を電気的興奮として検出する従来の方法、及び、人間の声を聞いてどの領域が興奮するかについても詳しく調べて、es-fMRIの結果を再確認するとともに、これまでサルで行われてきた電気的結合研究結果と同じで、直接聴覚野から腹側側頭前頭皮質へ投射が人間でも存在することを確認している。
話はこれだけに見えるが、実際のデータでは上に示した領域以外にも反応が見られているので、今後はもっと広い範囲でサルとの比較が必要だが、最初あげた言語回路については、人間もサルも一緒だという結論になっている。
ただ、素人の私から見ても、この実験は始まりに過ぎない様に思う。es-fMRIが可能なら、今後工夫した課題と、この手法や行動中のfMRIを合わせて、高次機能の脳回路を調べることができる。事実、この研究でも聴覚野からの刺激に前頭弁蓋の強い反応が両者で起こることが示されているが、前頭弁蓋は時間とともに進行するイベントを認識する領域であることを考えると、言語や音楽の認識と、時間経過の認識の脳回路を、人間とサルで比べることも可能になると思う。
MRIに耐える材料の電極ができたということだが、現役時代、亡くなった笹井さんが、MRIを使いながら手術するための道具を作るため、神戸の中小企業団体を助けていたのを思い出した。
2021年2月4日
睡眠中に覚えたことをもう一度再現(リプレイ)して記憶を確かにするためにおこるreplay burst と呼ばれる神経現象は、脳科学の概念としては専門外の人間にもわかりやすい。素人的に考えると、何か一つのことに集中するには、外界からの新しい刺激は邪魔で、できれば眠っているときにもう一度思い出してみるというアイデアは理にかなっている。
今日紹介するオックスフォード大学からの論文は、人間のボランティアを用いてリプレーと外界からの遮断状態との関係を調べた研究で3月3日発行のNeuronに掲載予定だ。タイトルは「Replay bursts in humans coincide with activation of the default mode and parietal alpha networks(人間でのリプレイバーストはデフォルト状態と側頭葉のα波ネットワークの活性化と一致する)」だ。
リプレイバーストと名付けられている様に、脳全体で同期して細胞が興奮してスパイクを発する現象で、人間の場合、高い波長の脳波を拾うことで検出することができる。ただ、このバーストが起こるきっかけを調べるためには、外界から遮断された休んでいる脳について調べる必要がある。
この研究では脳磁計で捉えられるリプレイが、睡眠時だけではなく、覚醒はしていても外界から離れてボーとしている状態(これを脳科学ではdefault modeと呼ぶ)でも起こることに着目し、default modeでリプレーが起こる課題を設定し、このときに見られるリプレイバーストと、fMRIで捉えられる脳のdefault modeを支えるαネットワークの活動との関係を調べている。
実際には、膨大な記録を統計学的に処理し、様々な解析を行なっているが、結論は一言で、外界への注意と逆相関することがわかっている頭頂皮質と海馬の回路を中心とする4箇所のαネットワークの活動と、リプレイバーストが明確に連関していることを明らかにしている。すなわち、ボーとしているとき、頭頂皮質の一部がより強く活動して、外界から私たちを遮断するシグナルが刺激となってリプレイが起こるという話だ。
脳科学としては、もともと結合しにくい、リプレイバーストとdefault modeでのαネットワークを同時に調べたという意義が大きい様だが、素人的には、ボーとしているdefault modeも操作でるかもしれないという妄想が湧いてきた。特に高齢者になると、ボーとする時間が増え、記憶が落ちる。この論文を読んでDefault modeでもちょっと頭頂葉を働かすコツを覚えれば、リプレイを高めることはできないだろうか?などと考えているが、専門家に笑われるかな?
2021年2月3日
腸内細菌叢の発達には食事を中心とした生活環境要因の影響が大きい。それでも、環境は同じでも遺伝形質が異なるmonozygoticとdizygotic twinを比べる研究から、ある程度ホストゲノムの影響を受けることが想像されているが、大きな集団を対象としたゲノム研究では、明確な結論は出ていない。これは、集団が大きいほどゲノムとの相関を特定する可能性は上がるが、対象とする集団の生活環境要因を揃えることが難しくなるためだと思う。
今日紹介するドイツ・キール大学からの論文は、それぞれドイツの狭い地域に住む5種類のコホート集団を対象にすることで、生活環境の影響を整え、ゲノムとの相関を調べやすくして細菌叢とゲノムの問題に再チャレンジした研究で1月18日発行のNature Geneticsにオンライン掲載された。タイトルは「Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome(8956人のドイツ人の全ゲノム相関研究から腸内細菌叢へのABO型の影響が明らかになった)」だ。
選ばれたコホートのうち4つは北ドイツで、1つは南ドイツだが、それぞれの腸内に存在する細菌はかなり似通っていると言っている。すなわち、生活環境要因をかなりの程度そろえることができている。
この集団で、細菌叢の様々な指標、例えば多様性、各種類の定量的違い、さらには検出可能性などと遺伝子多型の相関を調べると、44種類の統計的に有意と考えられる多型が発見されている。
この結果、例えば乳酸分解に関わる遺伝子多型とビフィズス菌との相関、あるいはBarnesiellaの存在とBiliverdin 分解酵素(TLR4発現に関わる)遺伝子座の多型などが明らかになっている。
ただ、この研究で着目したのはFaecalibacteriumとBacteroidesと血液型に関わる糖添加酵素遺伝子座の多型との相関が特定された点で、改めてこれらの細菌とABO型との相関を調べ直している。結果は期待通りで、Bacterioidesの量はO型以外の血液型を持つ人で多く、またFaecalibacterium とA型が相関することを明らかにしている。
最後に、遺伝子型を用いて形質を無作為化して調べるMendelian Randamizationと呼ばれる方法を用いて、それぞれの細菌と、炎症性腸疾患などとの相関を確認している。例えば、O型以外で多いBacteroidesは Mendelian Randamizationで見るとクローン病と相関する。他にも、この手法で遺伝子背景をそろえることで、病気とバクテリアの相関が明らかになることから、遺伝要因を正確に結果に反映させることで、細菌叢の効果をより明確に評価できることを強調している。
主な結果は以上で、腸内細菌叢の発達は環境要因だけではなく、遺伝要因も関わることが明らかになったが、最も面白いのはなぜABO型と細菌が相関するかだ。この研究では、O型以外の人は、H抗原にさらに糖が添加された分子が腸管に分泌されるためと結論しているが、詳しいメカニズムははっきりしない。しかし、Covid-19の重症化にも同じ様に血液型が関わることは、ひょっとしたら腸管を介した結果かもしれない。
2021年2月2日
先日紹介したコウモリの様に、コロナウイルスに感染した細胞が静かに死んで、新しい細胞に置き換わるのを待てるなら、何の問題もない。しかし私たちの細胞は、ウイルスが入ってくると大騒ぎして周りの細胞にアラームを発しながら死ぬ様にできている。こうして起こる炎症が呼吸不全や全身の血管炎の引き金を引いてしまう。この炎症に関わる一つの経路が、インフラゾームと呼ばれる炎症の核になる細胞内システムで、システムと呼ばざるを得ないほど複雑で、余程勉強しないと理解できない代物だ。
ほとんどの場合、インフラマゾームというとNLRP3になってしまうが、実際には何種類も存在する。中でもNLRP1は上皮に強く発現が見られ、おそらくCovid-19感染でも重要な役割をしていることが想像される。というのも、相次いで発見されたNLRP1の変異の解析から、この分子が皮膚や肺の炎症に関わることが明らかになっており、さらに最近ウイルスのプロテアーゼにより活性化され、インフラマゾームを形成することが報告されている。当然、NLRP3に加えて、肺の炎症をさらに複雑にしていると考えるのが筋だ。ただ、NLRP1の構造や機能が人とマウスで大きく異なっているため、NLRP3と比べると研究が遥かに遅れていた。
今日紹介するドイツ ミュンヘン大学からの論文はCovid-19の研究ではないが、NLRP1がウイルス複製時に発生する長い二重鎖RNAにより活性化されることを示した重要な研究で、今後Covid-19の病理を考える意味でも重要な貢献だと思う。タイトルは「Human NLRP1 is a sensor for double-stranded RNA(人間のNLRP1は二重鎖RNAのセンサーとしてはたらく)」で、1月29日号のScienceに掲載された。
この研究では人ケラチノサイトにDNAウイルス、positive-RNA ウイルス、そしてnegativeRNAウイルスを感染させ、NLRP1の活性化を調べ、positive RNA ウイルス(コロナウイルスと同じ)を感染させたときにだけインフラマゾームが活性化されることを発見する。しかも、RNAの長さが500bp以上ないと活性化が起こらないことを発見した。
またこれまで想像されていた様に、この二重鎖RNAで活性化される性質はヒトNLRP1特異的でマウスのNLRP1bには見られない。
あとは、NLRP1が欠損した細胞に様々な形のNLRP1を戻すことで、二重鎖RNAセンサー機能がLRRドメインに長い二重鎖RNAが絡みつくことで引き金が引かれ、そのあと短い二重鎖RNAでNACHTドメインのATP 加水分解活性が誘導されることを遺伝学的、生化学的に証明しているが、詳細は省く。
以上、二重鎖DNAについてはAIM2というセンサーが既に知られているが、ついにRNAウイルスの複製が始まったときに感知して炎症を誘導する仕組みが明らかになったと思う。二重鎖RNAに絡みつくところなど、結構原始的な仕組みを使っている様に思うが、肺の炎症を考えるときNLRP1は重要な鍵になる様な気がする。
2021年2月1日
友人のリクエストで、2月15日から2回/月のペースで、岡崎さんと細菌叢についてのジャーナルクラブを行うことにした。今や腸内細菌叢という言葉が、一般にも市民権を得るだけでなく、食品コマーシャルのキーワードとして頻繁に使われている。医師として患者さんに向き合う中で、XXヨーグルトで免疫力を高めたいのですがなどと問われると、コマーシャルは信用できるのか心配になるのも当然だ。
この分野の論文を読んできた半専門家の立場から見ると、腸内細菌叢は今も最も重要な課題のひとつだが、研究のブームという点では下火になった印象だ。というのも、便を採取して遺伝子を調べ、統計解析を行えば何らかの結論が出ると言ったタイプの現象論的研究はもはや見向きもされなくなり、課題を明確にし、明確な因果性を求める研究が求められる様になったからだろう。このためには、高い研究能力が求められる。
今日紹介する米・国立アレルギー感染病研究所からの論文は、腸内細菌叢の研究が変遷しつつあることを示す好例として是非ジャーナルクラブで取り上げたい研究で、2月4日号のCellに掲載された。タイトルは「Infection trains the host for microbiota-enhanced resistance to pathogens(感染は宿主を病原性細菌に対する抵抗性を高めるための訓練になる。)」だ。
この研究の課題設定は、「病原性細菌を一度経験すると、細菌特異的免疫とは別に、病原性細菌に対する抵抗力が獲得できるか?もし獲得できるならそのメカニズムは?」と明瞭だ。
まず院内感染で問題になる常在菌、肺炎桿菌を選んでマウスに摂取させると、2日も経つと腸内から自然に駆逐されるが、先に抗生物質で腸内細菌叢を壊しておくと、長期間肺炎桿菌感染が成立する。すなわち、細菌叢自体が肺炎桿菌の腸内での増殖を抑えることを確認する。
ここまでは従来の現象論と一緒で何も面白く無い。因果性を調べるためには、まず感染を抑える細菌叢を形成するための条件と、その細菌叢が病原菌を抑える機構を特定することが現在では求められる。この研究では、弱毒化したエルシニア菌を感染させると、エルシニア菌が消失した後も、肺炎桿菌への抵抗力が備わった細菌叢が形成できるという実験系を確立し、抵抗力を持った細菌叢とは何かを探索している。
感染による訓練を受けなかった細菌叢と比べ、いくつかの細菌種が増殖していることを確認しているが、現在ではこれだけでは相手にされない。細菌叢の全ゲノム解析から、感染を経験した細菌叢ではタウリンや硫酸塩を亜硫酸塩に分解する酵素系が高まっていることを突き止める。これを手がかりに、メタボローム解析を行い、感染を経験した腸内ではタウリンが著明に上昇していることを確認する。そして、感染により肝臓に炎症が起こると、胆汁分泌が上昇、その結果腸内でタウリン量が上昇し、これがタウリンを利用する細菌の数を増加させて、病原菌への抵抗力を高めるということが明らかになった。
これを確かめるため、今度はタウリンを摂取させる実験を行い、腸内に細菌叢が存在する場合のみタウリン接種により、病原細菌に対する抵抗性を獲得した細菌叢が形成できることを示している。
ではタウリンを代謝できる細菌の増加がなぜ病原菌への抵抗力を付与できるのか?詳細を省いて結論だけを紹介すると、タウリンから分解された亜硫酸塩が細菌の呼吸機能を抑えて、感染を防いでいる。
結果は以上で、結論となるとちょっとしょぼいかなとは思うが、細菌感染の記憶他、獲得免疫や自然免疫だけでなく、細菌感染は胆汁、タウリン、タウリン分解細菌、そして分解された亜硫酸塩を介して行われることを示して、細菌叢研究が「免疫力」などといった薄っぺらい言葉では語れない分野であることを示している。
2月15日から友人の参加も得て、もう一度細菌叢研究を考える中で、この様な複雑な知識を、一般の人を騙さない、しかしわかりやすい知識にするには何が必要かも考えていきたい。
2021年1月31日
現在パーキンソン病の発症には、様々な過程が関わっていることが明らかになってきた。αシヌクレインの蓄積、ミトコンドリアの新陳代謝の障害、細胞ストレス、さらには免疫機能まで示唆されている。確かに、慢性的な変性疾患は、一つの要因だけで決まるほど単純ではない。逆に言うと、パーキンソン病のリスクを抱えていても、他の要因をうまくコントロールすることで発症を遅らせることも可能になる。
今日紹介するペンシルバニア大学からの論文は細胞内のリソゾームの活性がパーキンソン病の発症に関わることを示した研究で、新しい発想の介入法のヒントになるかもしれない。タイトルは「A growth-factor-activated lysosomal K + channel regulates Parkinson’s pathology(殖因子により活性化されるカリウムチャンネルはパーキンソン病の病理を調節している)」で、1月27日号のNatureに掲載された。
この研究では最初から外部の増殖因子の影響を受けてリソゾームのpHを至適化するため、カリウムの流入を調節するチャンネルがあるはずだと考え、神経細胞のリソゾーム膜のパッチクランプを行い、カリウムチャンネルの活性を調べ、TMEM175がインシュリンシグナルの下流に存在するAKTと膜状で結合することで、インシュリンシグナル反応性のカリウムチャンネルを形成していることを明らかにした。もちろん、AKTが活性化できればどの増殖因子でも同じ効果があるが、AKTのリン酸化活性は必要ないことも明らかにしている。
この様に、リソゾーム膜のカリウムチャンネルの特定、そしてその機能を明らかにした上で、TMEM175にはパーキンソン病のリスクと相関する5%ほどの正常人に分布する多形が存在することに着目し、これらのバリアント・カリウムチャンネルの機能をさらに追求した結果、パーキンソン病発症リスクと相関する多型ではカリウムチャンネルの開きが低下していることを発見している。
最後に、この多型を導入したマウスや、TMEM175がノックアウトされたマウスを用い、カリウムチャンネルの機能が少し低下するだけで、αシヌクレインが蓄積しやすくなること、さらにはTMEM175ノックアウトマウスではドーパミン神経数が低下していることを示し、TMEM175のバリアントがパーキンソン病発症に関わることを実験的にも示している。
以上、増殖因子により調節されるカリウムチャンネルの研究から、リソゾームが最終的な掃除屋として神経細胞保護に関わると言う、しごく当たり前の話だが、病気の進行を遅らせると言う意味では、重要な標的が示された様に感じる。
さて、これは細胞の中の掃除の話だが、折しも脳全体の掃除機能もパーキンソン病のリスクになることを示す論文が中国鄭州大学から1月21日Nature Medicineにオンライン掲載された。タイトルは「Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease。(髄膜のリンパ管還流がパーキンソン病の患者さんでは低下している)」。詳しくは述べないが,これまで何度も紹介した(https://aasj.jp/news/watch/3542)脳の活動で出る老廃物を脳外へと洗い流すリンパ流量をMRIで測定し、突発性のパーキンソン病の方では、流量が落ちている、すなわち老廃物の排出がうまくいっていない可能性を示した研究だ。この研究でも、人間での観察だけでなく、マウスの実験系でリンパ流をブロックすると、αシヌクレインの脳内蓄積が高まり、運動障害が出ることを示している。以前脳内の掃除は夜寝ている時行われていることを示す論文を紹介したが(https://aasj.jp/news/watch/11657)、この論文が正しければ、よく寝るなど、なんとかこのリンパ流を戻す方法を突き止めて、病気の進行を遅らせる方法を開発してほしい。以上、細胞の掃除、脳の掃除過程が、パーキンソン病だけでなく、神経変性疾患の介入ポイントになることを示す重要な貢献だと思う。
2021年1月30日
考えてみると、バンパイア伝説は、今人類が直面するウイルス性のパンデミックと重なるところが多い。伝説ではバンパイヤとヒトとの接触が、ヒトを吸血ゾンビに変化させ、今度は人から人へと広がる。そして何よりも、バンパイアにはSARSウイルスなどのコロナウイルスや、エボラウイルスなどの運び屋コウモリが擬人化されている。
以前紹介したが、17世期ポーランドの村では村で最初に疫病にかかった人をバンパイアと考えて、特別に埋葬した(https://aasj.jp/news/watch/2490)。とすると、コウモリが伝染病を媒介することを経験的に予感していた可能性すらある。そして今やこの可能性は事実となり、コウモリとウイルスの関係に科学的メスが入れられている。
今日紹介したいのは、デューク大学とシンガポール国立大学が協力してシンガポールに設立した医科大学と浙江大学が共同で発表した、まさにタイムリーな総説論文で、どうしてコウモリがウイルスのキャリアーになるのかがうまくまとめられていた。タイトルは「Lessons from the host defences of bats, a unique viral reservoir(特殊なウイルスキャリアーとしてのコウモリの宿主防御機能から学ぶ)」で、1月21日発行のNatureに掲載されている。
総説はまずコウモリの生物学から始まっているが、読んでみてなんとすごい生き物かということが理解できた。しかも、この特殊な性質が、コウモリとウイルスの不思議なバランス関係を成立させている。
まず驚くのは、種によっては2000万匹にもなるコロニーサイズで、おそらく人間と家畜・ペットを除くと破格の数の集団だが、繁殖率は低めで、雑食だ。かなり人間に近いが、驚きはさらに続く。なんと記録が残る寿命は43年以上で、小型哺乳動物としてはハダカデバネズミを超えて最長を誇っている。一方、運動能力では人間の比では無い。空を飛べるだけではない。そのために、体温を41度以上に高め、さらに心拍数はなんと1分に1000回近くまで上昇する。要するに、抗老化には最悪の高い代謝を維持しながらも、長寿を達成するという羨ましい存在と言える。
ただ、空を飛べて、長寿でもウイルスのキャリアーにはなれない。一番重要なのは、ウイルスに対する免疫機能がどうなっているかだ。多くのウイルスは動物により媒介されるが、ウイルス感染後、当然自然免疫が誘導され、動物も何らかの症状を示す場合が多い。Covid-19で言えば、ハクビシンやミンクにも感染するが、この場合必ず何らかの症状を示す。これに対しコウモリはエネルギー代謝に影響する特殊なウイルスで重症化・死亡する例外はあっても、ほとんどのウイルスに感染しても、無症状のことが多い。ある意味で、ウイルスが共存できるのは特殊な免疫システムがあるからだ。
PubMedで調べてみると、パンデミック理解にこれほど重要なコウモリの免疫機能に関する論文はようやく1000を越したところで、あまり研究費が回っていなかったと思う。しかし、この総説を読んでみると、新型コロナに関わらず、十分研究価値が高い哺乳動物なのがわかった。
コウモリのウイルス免疫(特に自然免疫)機能を一言でまとめると、1型インターフェロンに代表される防御機構が、ウイルス感染にかかわらず、高いレベルで維持されている。エボラウイルスやコロナウイルスは、感染初期から1型インターフェロンシグナルを抑える仕組みを何重にも持っているが、コウモリを運び屋にする中で培ってきたのかもしれない。いずれにせよ、最初からインターフェロン防御を高めることで、感染量を低下させることができる。
とは言え、エボラウイルスやコロナウイルスをコウモリに感染させるとウイルス量は最終的に極めて高いレベルに到達できる。これは、ウイルスがインターフェロンをすり抜ける仕組みがあるからだが、なぜ症状が出ないのか?
驚くことに、コウモリでは、いわゆるインフラマゾームを活性化して炎症を誘導する機能が低下している。というより欠損していると言っていいのかもしれない。というのもコウモリだけが、細胞内のDNAを感知してインフラマゾームを活性化するために働く、AIMなどのPYHINファミリー遺伝子が完全に欠損している。完全に欠損しているのは、これまで調べられた哺乳動物の中ではコウモリだけらしい。この結果、ウイルス感染が起こっても、細胞死や、組織全体を巻き込む炎症が起こりにくい。さらに、caspase IやIL-1βシグナル自体を抑える機構も備えており、種によっては免疫性の炎症に関わるTNFシグナルも低下している。この結果少々ウイルスが増加しても、炎症が起こることはほとんどない。
要するに、ウイルスへの自然免疫と、炎症を切り離してしまった結果だが、この間に、獲得免疫系が誘導され、ウイルスのさらなる感染は抑えられれば、最終的に感染は収束する。残念ながらこの総説では獲得免疫については、コウモリのMHCが長いペプチドを認識できる以外に紹介されておらず、モデル動物以外の研究の難しさがわかる。
なぜ細胞内の核酸を認識して自然炎症を誘導する仕組みが欠損したのかについては、おそらく平常時の30倍にも代謝を上昇させたときにおこる、細胞内ストレスや生成したDNA断片は自然炎症を誘導してしまうので、これに対応するため、インフラマゾームによる炎症プロセスを抑える仕組みを進化させたのではと議論している。また、炎症を抑える仕組みを獲得したことで、高い代謝を維持しながらも長寿を達成できたのだろう。
いずれにせよ、ある程度初期の感染量を抑える定常的自然免疫と、ウイルスへの自然免疫反応を抑えることができる仕組みがあれば、無症状のままウイルスと共存できることを、コウモリは見事に示している。この教えをいかにサイトカインストーム治療に生かすことができるか、covid-19だけでなくこれから経験する多くのパンデミックを乗り越える鍵になると思う。
最後に私の妄想で聞き流してほしいが、この様なウイルスとの共存を可能にする免疫システムは、コウモリで選択的に進化してきた証拠があるらしい。だとすると、コウモリはウイルスの運び屋になることで、疫病を運んで人間を近づけない様にしてきたのかもしれない。ただ、間違ってもコウモリ全滅計画などと騒がないでほしい。コウモリの平和を乱しているのも人間だということを忘れてはならない。
2021年1月29日
言われてみるまで全く気づかなかったという話は多いが、今日紹介するミュンヘン・ヘルムホルツセンターからの論文はそんな例だ。この研究は、インシュリンで満たされた環境で、どうしてインシュリン受容体を発現している膵臓のβ細胞が、強いインシュリンシグナル下で正常に発生し、機能できるのかという疑問からスタートしている。そして、β細胞のインシュリン中毒を防ぐための分子があるはずだと探索を進め、ついに新しい分子に到達している。タイトルは「Inceptor counteracts insulin signalling in β-cells to control glycaemia(Inceptorはβ細胞でのインシュリンシグナルに対抗し血糖をコントロールする)」で、1月27日Natureにオンライン掲載された。
この論文を発表したHeiko Lickertは、彼がトロントRossant研究室のポスドクの頃から期待してきたが、彼のキャリアにとってこの研究はかなり大きな意味を持つ様に思う。論文からだけでは、彼がinceptorと名付けたインシュリン受容体の拮抗阻害分子をどう特定したのかわからなかったが、ともかく細胞外ドメインはインシュリン受容体や、IGF受容体に似ているが、チロシンキナーゼドメインを持たない受容体分子にたどり着き、構造からこれこそインシュリン受容体の作用を抑える調節分子だと確信して、研究を進めている。しかし、なぜ今までこんな分子が気づかれずに残って、Heikoを待っていたのか不思議な気持ちだ。
次に、inceptorに対するモノクローナル抗体を作成し、発生途上から成熟後まで発現を調べると、期待通り膵臓の内分泌・外分泌系が分化し始めるここからこれら分泌細胞で発現が見られ、成熟すると膵島に強く発現していることを確認する。
次にその機能を調べるために、ノックアウトマウスを作成している。マウスは正常に発生し生まれるが、生後5時間以内でほとんどが死亡する。死因を調べると、β細胞の数が増加し、結果インシュリンレベルが高まり、マウスが低血糖で死ぬことがわかった。まさに期待通りの結果だ。
コンディショナルノックアウトを作成してみると、正常状態では特に差はないが、ブドウ糖を注射してインシュリンに対する反応を見ると、インシュリンに対する感受性が高まっていることがわかる。そして、分離した膵島にインシュリンを加える実験を行い、inceptorが存在しないと、インシュリンやIGFに対する反応性が高まっていることを明らかにしている。すなわち、β細胞にのインシュリン受容体を介して強いインシュリン刺激が入ると、β細胞が過増殖を行うため、これを防ぐメカニズムが存在するという最初の仮説を証明している。
最後にインスリノーマ細胞を用いた細胞学的な実験で、inceptorがインシュリン受容体と全く同じエンドゾームからゴルジ体へと移行するためのメカニズムを共有し、細胞内へインシュリン受容体のinternalization を促進し、受容体の活性化を調節していることを明らかにする。さらに、inceptor細胞ガイドメインに対する抗体により、inceptorとともにインシュリン受容体のエンドゾームの取り込みが低下し、細胞膜にとどまることも示し、将来臨床的な利用が可能であることまで示唆している。
以上、inceptorがインシュリン受容体刺激後の細胞内へ取り込みを促進し、インシュリンのシグナルを抑えることでベータ細胞を守る全く新しい仕組みを示した。Heikoの得意満面の顔が思い浮かぶが、例えば過剰な糖を取りすぎておこるペットボトル症候群などに対する臨床応用も含めて面白い分野が開かれた様に思う。
2021年1月28日
ALSが運動神経の変性による病気であることは間違いないが、運動神経が死に至る原因は様々だ。中でも、C9orf72と呼ばれる遺伝子のプロリン/アルギニンペプチド繰り返し配列が増大するタイプは、他のリピート病と同じ様に、異常アミノ酸の毒性が原因だろうと片付けてしまっていた。
今日紹介するスタンフォード大学からの論文はC9orf72のプロリン/アルギニンリピートの細胞死の原因が、ガン抑制遺伝子p53の活性が上昇することによることを明らかにした、この分野では画期的な論文で2月4日号Cellに掲載された。タイトルは「p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR)(p53はC9orf72poly(PR)により誘導される神経変性を促進する中心的因子だ)」。
おそらくこのグループはALSのエピジェネティックな要因を調べていたのだろう。その過程で、RNA結合分子TDP-43の変異と、C9orf72のプロリン/アルギニンリピート(PR)による神経細胞死を誘導する実験系を用いて、神経細胞死が誘導された細胞で開いているクロマチン領域をATAC-seqを用いて調べ、PRリピートによる場合のみ、多くの遺伝子のp53結合部位が開いていることを発見する。また、PRリピートを誘導した細胞で発現している遺伝子を調べても、ATAC-seqの結果と同じで、p53により誘導される遺伝子群の発現がはっきりと上昇している。
さらにp53をノックアウトした細胞にPRリピートを導入しても、細胞死は起こらないことから、p53がPRリピート導入による細胞死を調節する中心に存在することがわかる。一方、TDP-43による神経細胞死はp53ノックアウトで抑制できない。
さらに、PRリピートをアデノ随伴ウイルスベクターで導入して神経細胞死を誘導する実験モデルで、p53ノックアウトマウスは、正常マウスより倍近く長生きすることも示している。しかし、p53遺伝子の欠損は、同じ機能を持つp63やp73で代償され、またこれらの分子もPRリピート導入によりレベルが上昇するので、生存期間を伸ばせても、治すことはできない。
そこでp53以外に標的になる分子がないか調べ、p53の下流に存在する細胞死を誘導する分子Pumaをノックアウトした細胞でも、PRリピート導入による細胞死を防げることを示している。
実際にはかなり端折って紹介したが、結果をまとめると以下の様になる。
PRリピートが細胞内に蓄積すると、まだよくわからないプロセスを介して、p53などのタンパク質が安定化し、この結果下流の遺伝子が誘導される。この結果、DNAの切断がおこり、同時にpumaをふくむ様々なp53下流分子が誘導され、神経細胞死へと到る。
p53を標的にした治療はあまり現実的ではないが、Pumaを始めp53の下流分子が特定できたことで、このタイプのALSは治療戦略が立てられる可能性が生まれたのは期待できる。また、他のリピート病でも同じ可能性があるのか興味深い。いずれにせよP53が出てきたという意外性も含めて、面白い研究だが、なぜPRリピートでp53が安定化するのか、なぜ運動神経におこるのか、など新しい疑問が生まれた。無駄と思わず、わからないうちはなんでも調べてみることの大事さを示す研究だと思う。