3月31日 自然炎症機構は脳の記憶維持に流用されている(3月27日 Nature オンライン掲載論文)
AASJホームページ > 2024年 > 3月

3月31日 自然炎症機構は脳の記憶維持に流用されている(3月27日 Nature オンライン掲載論文)

2024年3月31日
SNSシェア

2015年6月7日このブログで神経の興奮後にDNA切断が起こることを紹介して以来(https://aasj.jp/news/watch/3560)、たとえば左巻きDNA形成を介して記憶維持に関わる(https://aasj.jp/news/watch/13152)、そしてこのDNA切断を修復するため、神経細胞は独特の修復機能を発達させていること(https://aasj.jp/news/watch/21573)、などを紹介してきた。ただ、これらの研究ではDNA切断と炎症機構とリンクさせることは行われなかった。

しかし、DNAは Toll like receptor を介して自然炎症を誘導することが知られており、今日紹介するシカゴ・Northwestern 大学からの論文はこの点について調べ、自然免疫反応の下流で誘導される分子がDNA修復とともに、記憶形成に関わることを明らかにした論文で、3月27日 Nature にオンライン掲載された。タイトルは「Formation of memory assemblies through the DNA-sensing TLR9 pathway(DNAを検知する TLR9 経路を解する記憶神経集団の形成)」だ。

これまでの神経興奮によるDNA切断に関する研究は、神経興奮後の immediate early gene の発現までの過程に焦点を当てていたが、この研究は恐怖刺激による条件付けを用いた文脈依存記憶成立に関わる後期、すなわち興奮後96時間でみられる過程に焦点を当てている。

マウスの条件付け後、海馬の興奮神経でDNAの切断部位が1時間目で急速に増加し、6時間ぐらいかけて修復されていくが、この研究では24時間後96時間にかけて、切断DNAが核外に放出される像が見られるのに注目した。そして、これに呼応して細胞内DNAを検知して自然免疫反応の引き金を引く TLR9 が上昇することに気づいた。

そこでこの神経興奮後、後期過程で起こる TLR9 が引き金を引く自然免疫反応が、長期記憶に関わるかどうかを調べるため、Tlr9 を海馬神経特異的にノックアウトすると、恐怖に対する記憶の成立が低下する。一方、アストロサイトで TLR9 をノックアウトしても同じような記憶成立障害は見られない。

以上の結果は、DNA切断、興奮後後期に見られるDNAの細胞質への排出、TLR9 による自然免疫誘導と続く過程は、単純にストレス反応だけでなく、記憶形成に必要なシナプス変化を誘導している可能性がある。そこで、TLR9 ノックアウトマウスと正常マウスを条件付け、後期に見られる遺伝子発現の変化を調べると、TLR9 はシナプス分子の発現に関わるというより、たんぱく質の安定化、小包帯輸送、繊毛形成、代謝、などさまざまな過程を介してシナプス接合の安定化に関わっていることがわかった。また、海馬のシナプス形成の成熟に関わる DCX 発現との比較から、TLR9 が DCX 発現を通してシナプス成熟を後押しする可能性も示唆している。

さらに、TLR9 自体はそのまま細胞死過程まで誘導する可能性があるが、まずDNA修復機構を誘導して刺激を抑えることで、神経細胞を変性から守る働きもある。

以上が結果で、自然免疫システムの特徴が、うまく記憶形成に流用されたと考えたほうがよさそうだ。とすると、やはり神経が興奮すればするほど、神経にストレスを与え、それが記憶に繋がることになる。頑張ってブチ切れよう。

カテゴリ:論文ウォッチ

3月30日 筋肉疾患治療法開発2題(3月20日号 Science Translational Medicine 掲載論文)

2024年3月30日
SNSシェア

3月20日号のScience Translational Medicineに重症筋無力症および筋ジストロフィーの治療法開発論文が発表されていた。いずれも根治というよりは対症療法なのだが、まとめて紹介することにする。

最初はデンマークの創薬ベンチャー BMD Phmarma からの論文で、筋肉のクロライドチャンネルをブロックして筋肉の興奮性を高め、重症筋無力症の筋肉症状を改善する薬剤の開発だ。タイトルは「The ClC-1 chloride channel inhibitor NMD670 improves skeletal muscle function in rat models and patients with myasthenia gravis(ClC-1 クロライドチャンネル阻害剤はラットモデルと重症筋無力症患者さんで筋肉機能を改善する)」だ。

重症筋無力症は神経・筋のシナプス接合に関わるアセチルコリン受容体などに対する自己抗体ができ、筋肉の興奮が低下する病気で、自己免疫病の治療とともに、シナプス伝達を高めないと命に関わる。自己免疫病治療については抗体薬など新しい方法が開発されているが、筋肉の興奮を維持する対症療法はほとんど私が病院で働いていた頃と変わらない。

BMD Pharma は、筋肉興奮が ClC クロライドチャンネルにより抑制されていることに着目し、筋肉特異的 ClC−1 阻害剤 NMD670 を開発した。論文ではラット重症筋無力症モデルで、NMD670 投与により筋肉機能が改善することを見た上で、第一相治験を12人の患者さんについて行なった結果が示されている。NMD670 の効果は即効性なので、12人は無作為的に、コントロール群や異なる容量投与群へローテートしている。

結果だが、まず耐えられない副作用はなく、効果は症状から計算するスコアで明確に改善があったことが示されている。対症療法と言っても重症筋無力症の場合、筋肉興奮維持は必須で、抗コリンエステラーゼにつぐ薬剤がようやく開発されたと期待している。

もう一報のカナダ・Sherbrooke大学からの論文は、様々なタイプの筋ジストロフィーで血管障害に基づく筋肉幹細胞リクルート異常が生じて、症状を悪化させており、この過程を治療標的にできることを示した研究だ。タイトルは「Apelin stimulation of the vascular skeletal muscle stem cell niche enhances endogenous repair in dystrophic mice(アペリンは筋肉幹細胞の血管ニッチを刺激してディストロフィーマウスの内因性損傷を促進する)」だ。

筋ジストロフィーは筋肉が変性する病気で、ディストロフィンの変異をもつドゥシャンヌ型を始め様々なタイプが知られており、それぞれ原因となる突然変異が特定されている。このグループは、原因となる変異による筋肉の直接障害だけでなく、間接的に筋肉幹細胞のリクルートの減少も編成が進む原因になっているのではと考えた。

そこで、筋肉をヘビ毒で傷害して幹細胞が動員されるプロセスを比べると、ラミニン変異によるディストロフィーを筆頭に、コラーゲンVI 変異型、ドゥシャンヌ型全てで再生過程の異常が見られた。そしてこの原因を探ると、筋肉の血管量と構造の異常が起こっており、これが筋肉幹細胞ニッチの維持を難しくしていることがわかった。

血管異常の原因を探ると、アペリンと呼ばれる血管ホルモンの異常が共通に発見され、さらに血管特異的にアペリンをノックアウトすると、筋肉幹細胞からの供給が低下して筋ジストロフィーと同じような変性症状が見られることを示している。

そこで、筋ジストロフィーマウスに浸透圧ポンプを用いてアペリンを投与し続けると、3タイプ全てで血管の量と構造を回復させ、その結果筋肉編成を遅らせることができる。

すなわち、筋ジストロフィーにより、なぜか血管のアペリン分泌が低下して、これが禁呪酢トロフィーの修飾因子として変性を増幅するという話になる。残念ながら変異による筋肉異常からアペリン分泌異常へと移る過程については全くデータが示されていないが、筋ジストロフィーをアペリンなど血管を正常化して進行を遅らせるというアイデアは面白い。

カテゴリ:論文ウォッチ

3月29日血液老化を抗体で防ぐ(3月27日Nature オンライン掲載論文)

2024年3月29日
SNSシェア

老化した細胞を除去して新陳代謝を高める方法はsenolysisと呼ばれて、アンチエージングの切り札として研究が進んでいる。当然、血液幹細胞のクローン増殖、Y染色体脱落、メチル化 DNA の変化など、老化研究の進んでいる血液でも senolysis の可能性を追求した研究はあると思うが、不勉強なのかこれまであまり出会ってこなかった。

今日紹介するスタンフォード大学ワイスマン研からの論文は、老化に伴い増加する幹細胞集団を除去することで免疫機能の若返りを図れる可能性を示した面白い研究で、3月27日 Nature にオンライン掲載された。タイトルは「Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity(骨髄球にバイアスがかかった幹細胞を除去することで老化した免疫系を若返らせる)」だ。

ワイスマン研は表面マーカーを駆使した血液幹細胞の純化研究の先端を走ってきた研究室だが、この中で多能性幹細胞の中にも、様々な系列をバランスよく作れる幹細胞と、多核球や単球などの骨髄球系にバイアスのかかった幹細胞に大別でき、老化に伴って後者が増加することを発見していた。

この研究では、バイアスのかかった幹細胞 (bHSC) で発現が高い表面マーカーを特定して、これを用いて bHSC を除去することで、血液の老化を防止できないかという明確な目的に向かって研究が行われている。方法もまさに彼らの伝統を守り、フローサイトメータを駆使してマーカー探しを行なっている。

その結果、CD150、 CD62、NEO1 と呼ばれる bHSC に特異的表面マーカーを特定し、さらにこれらのマーカー陽性細胞が老化とともに上昇することを突き止める。そして、bHSC が増えることで、自然炎症に関わる探究などの産生が上昇し、IL1β などの自然炎症サイトカインが増加することも確認している。

次に、これらの表面マーカーを用いて bHSC を除去できるかの検討を行い、どの表面マーカーでも、細胞の貪食を阻害する CD47 をブロックし、さらに c-Kit 依存性の幹細胞増殖を弱く抑える(低濃度の c-Kit に対する抗体投与)、すなわち3種類の抗体を組み合わせて投与を行うと、老化に伴う bHSC の増加を抑制し、その結果骨髄球の産生が抑えられ、自然炎症が低下するとともに、HSC からリンパ球の産生低下を抑えることができることを示している。

この効果を確かめるために、フレンドウイルス感染系を用いて、ウイルスに対する抵抗性の低下が、抗体産生とT細胞免疫誘導で防げ、感染抵抗性が上昇するとともに、ワクチン接種の効果も高まることを明らかにしている。

最後に、ヒトでも同じマーカーを bHSC 検出に使えるか検討し、特に CD62 は老化とともに比例して上昇していることを明らかにしている。今後、single cell RNA sequencing などを用いて検討することで、ヒトの bHSC をさらに明確に分けることができるように思う。

以上が結果で、CD47抗体や cKit抗体を同時に用いるというのは人間では現実的でないだろう。ただ、bHSC のアイデアは面白いし、おそらく他の方法で、同じ状態を実現できる可能性はある。期待したい。

カテゴリ:論文ウォッチ

3月28日 Prosopometamorphopsiaの患者さんが見ている顔のイメージを再現する(3月23日号  The Lancet 掲載論文)

2024年3月28日
SNSシェア

まず今日紹介する予定の The Lancet 論文に掲載されているクイズの写真を見てほしい(https://www.thelancet.com/doi/story/10.1016/pic.2024.03.21.109783)。左の人の顔が右のように見えると患者さんが訴えた場合、診断名は何か?が問題で、Prosopagnosia、Prosopometamorphopsia、Capgras syndrome、 Palinopsia の中から選ぶ。この論文を読む前に答えの出る医師は、Chat-GPT 並みのテキストが記憶されている人だろう。ただProsopagnosia は鼻や目は見えているのに人の顔と認識できない事だとわかるし、Palinopsia は顔が何度も見えると錯覚する反復視のことで、専門医なら答えから除外するだろう。おそらく専門医でもCapgras 症候群を知っているのはかなり知識の豊富な医師で、配偶者を含む親しい人を、他の人物で置き換えられていると錯覚する厄介な病気のようだ。とするとこの病気も除外でき、残る答えは Prosopometamorphopsia になる。

とはいえどんな病気か全くわからないので PubMed で調べると、オランダ・ハーグにある Parnassia 精神研究所から、施設で経験した8例と、それ以前に報告されていた73例についてまとめた総説が2020年に発表されていた。

これを読むと、Prosopometamorphopsia とは、脳の損傷や腫瘍によって起こる極めて稀な症状で、人間の顔だけが歪んで見えると訴える。この時、自分の顔が歪む、他人の顔が歪む、顔の片方が歪む、さらには動物の顔に見えるタイプに分けられるが、他人の顔の片方というのが66%、自分の顔の一部が歪むのが4%、他人の顔も自分の顔も歪むケースが30%になる。

これを読んで思い出したのが、東京芸大の美術系の学生さんと飲む機会があったとき、自分の顔を鏡なしにかけますかと聞くと、ほとんどの人が即座に描けると答えていたことだ。ところが私自身、鏡で何度も見ているのに、鏡がないと自分の顔が思い浮かばない。頭の中に埋め込まれた形態のイメージが、実際の視覚を統合して顔認識が行われることを考えると、これが他人の顔だけ歪んで見えるケースが66%に達するのは、一般人では自分の顔の鋳型が埋め込まれている確率が低いからかも知らない。

このように、Prosopometamorphopsia は脳損傷により、顔の見た時の視覚インプットをトップダウンに統合するイメージ形成の異常と考えられるが、事実 Prosopometamorphopsia に至る障害は、後頭部資格や、脳梁、頭頂野の右側に集中している。

このような神経学的所見から、この論文は Prosopometamorphosia から、我々は経験を通して脳内に形成される鋳型に、現実に見ている顔の部分を当てはめることで顔のイメージを形成しているという、先に鋳型ありきの仮説を提案している。またこの鋳型も、いくつかの部位を統合して形成されるため、さまざまな領域間のネットワークが働いており、その一部が壊れると、歪んだ顔になると結論している。

今日紹介する論文は、今紹介した総説で詳しく述べられた Prosopometamorphosia の症状と一致する典型例の一例報告になる。タイトルは「Visualising facial distortions in prosopometamorphopsia(Prosopometamorphopsiaで患者さんが見ている顔の歪みを可視化する)」で、3月23日号の The Lancet に掲載された。ただ、稀な病気とはいえ、これだけまとまった研究があるのに、わざわざThe Lancetが掲載したのには大きな理由がある。

この58歳男性症例は双極性障害の病歴があり43歳で脳損傷、55歳で一酸化中毒を経験している。そして MRI 検査で右海馬に嚢胞が見られるが、それ以外の変化ははっきりしない。もし海馬の嚢胞が原因であれば、これまでの症例とは全く異なり、顔の鋳型形成ネットワークの複雑性を示す新たな例になる。しかしこの所見は掲載された理由ではない。

この論文のハイライトは、この患者さんでは、実物ではなく、写真やモニター画面に現れる顔は歪まないことを利用して、実物を見た時どのように患者さんには見えているのかを、モニター画面の顔のイメージを操作して再現に成功している点だ。すなわち、実物を横に置いて、同じ顔をモニターに投影し、実物と比べながらモニターの顔を変化させ、患者さんが納得できるイメージを画面上で再現した。それが、最初に見てもらった写真になる。

この結果は、実物と画面が並んで提示されているという状況を完全に把握できていても、実物を見ているというシグナルが、並んで置いてある画面に視線が移ると入らないため、異なる像がイメージされている点で、顔認識ネットワークの複雑性とともに、主観と客観という哲学の問題が、脳科学で新しい解釈を与えられているのがわかる。

考えてみると、このようなイメージを絵にした画家で最も有名なのは、フランシス・ベーコンだろう。例えばヒューストン美術館のサイトを見てもらうと(https://www.mfah.org/blogs/inside-mfah/understanding-francis-bacon)、まさに歪んだ顔が表現されている。ベーコンは正常の顔も描いているので、おそらく彼には両方がイメージできたのではと思う。芸大生には自分の顔の鋳型があるのと同じで、画家には凡人の持たないさまざまな鋳型があり、それを私たちは楽しんでいる。

カテゴリ:論文ウォッチ

3月27日 性決定の共通性と多様性(3月22日号 Science 掲載論文)

2024年3月27日
SNSシェア

生物学的な性の定義は遺伝子情報の交換が個体間で行われることで、大腸菌でも性は存在する。すなわち、遺伝子組み換えを通して、個体の持っている遺伝情報を交換することが、多様性を高めて種の保存を保証している。

単細胞動物では比較的簡単な性の維持も、高等動物になるにつれ複雑になり、精子や卵子といった配偶子だけでなく、オスとメスの分化が必須になってくる。今日紹介するドイツチュービンゲンのマックスプランク研究所からの論文は、褐藻類の性決定機構を調べることで、オスとメス決定の進化を展望した研究で、3月22日号 Science に掲載された。タイトルは「Repeated co-option of HMG-box genes for sex determination in brown algae and animals(褐藻の性決定に HMG BOX 転写因子が繰り返し流用された)」だ。

褐藻は巨大ケルプを含む海藻の仲間で、この研究ではその性決定に関わるマスター遺伝子を探すところから始めている。この時、他の生物での性決定に関わる遺伝子の共通性に着目している。すなわち、我々哺乳動物では SRY のような HMG ボックスを持つ転写因子で、おそらく褐藻も同じ HMG ボックス分子を持つ筈だと、オスとメスの配偶子を調べ、予想通り新しい HMG ボックスを二つ有する転写因子(MIN)を特定する。すなわち、褐藻は我々オピストコンタから10億年近く離れているが、その性決定に HMG ボックス分子が使われていることになる。

次に、この遺伝子のノックアウト実験を通じて褐藻の性がどう変化するか調べている。結果は期待通りで、我々の SRY と同じで、オスを決めるマスター遺伝子であることが示される。といっても、褐藻の形態はオスも、メスもほとんど違わない。ただ違いは配偶子がメスの配偶子のフェロモンを察知して融合する機能が欠損することで、オスの機能とはこれだけかと寂しくなる。それでも、MIN の下流では280種類の遺伝子の転写が変化している。

以上が結果で、あとは生物進化の過程で性決定メカニズムを HMG ボックスとの関わりで見直している。ここが一番面白いのだが、酵母から褐藻、そして我々まで HMG ボックス転写因子をマスター遺伝子として使うのは共通している。しかし、進化過程を辿ると、ひとつの先祖 HMG 遺伝子が進化するのではなく、それぞれの進化でオスメスが生まれる時、独立して HMG 遺伝子が使われることがわかる。実際、褐藻の進化でも今回 明らかになった MIN とは全く別の、しかし HMG 転写因子が使われていることもわかる。

以上のことから、HMG ボックスという特殊な機能を持つ転写因子は、性決定という多くの遺伝子を同時に変化させる必要性に合致しているため、性決定の進化で何度も何度も、流用が繰り返されたことがわかる。性決定を考える面白い切り口が示されたようだ。

カテゴリ:論文ウォッチ

3月26日 AI を用いて鳥の鳴き声を解読する(3月20日 Nature オンライン掲載論)

2024年3月26日
SNSシェア

Bird song learningは、我々の言語発達にもつながると、さまざまな研究が行われる面白い分野だが、これまで2回ぐらいしかこのブログでは紹介できていない。というのも、鳴き声のパターンや複雑性についてはわかっても、言語としての意味をほとんど理解することができないからだ。

今日紹介するテキサス・サウスウェスタン医学センターからの論文はニューラルネットを用いて Zebra Finch の鳴き声を、シラブルが組み合わさったセンテンスとして解析し、人間ではわからない違いを解読し、メスの好む人工的泣き声を合成するところまで行った画期的な研究で、またまた AI パワーに驚かされる研究で、3月20日 Nature にオンライン掲載された。タイトルは「The hidden fitness of the male zebra finch courtship song(オスのZebra finchの求愛ソングに隠れた適応)」だ。

まさに Large language model ならぬ Large song model を作る話で、Zebra finch(ZF) の鳴き声をまず18個体から集め、これを15万近い分離したシラブルに分け、このシラブルを我々の言語での単語と見立てて、様々な特徴(ピッチ、強さ、などなど)を多次元パラメータで表し、これらを Siamese convolutional neural network と呼ばれるニューラルネットモデルに学習させ、シラブルが分布する多次元モデルを作成している。そして、それを次元圧縮して表現している (UMAP) 。LLM で言えば単語同士の位置関係を二次元で表示した UNAP と考えればいい。

ZF では親から歌を習った場合と、習わなかった場合で鳴き声が異なる。習った場合は、親の歌を真似した歌で、メスはこちらの声を好む。習わなくても鳴くのだが、習っていないパターンではメスに好かれないことが知られている。

まず面白いのは、親に歌を習った鳥の鳴き声(イミテート声)に存在するシラブルと、習っていない鳴き声(即興声)のシラブルは UMAP 上の異なる領域に分布している。すなわち単語レベルでまず異なっている。

そしてイミテート声と即興声を区別するのは、一つのセンテンスとしてシラブルを繋いだ時、UMAP 上でのセンテンスの長さがイミテート声で長いことだ。すなわち、習わない場合より複雑なシラブル構成をとっていることがわかる。

次は、こうしてなんとか解読した鳴き声の違いが、そのままメスを惹きつける効果に繋がっているかを調べるため、人工的にイミテート声と即興声を作成し、それぞれを別の場所から流した時、メスがどちらに引きつけられるか調べると、イミテート声の方に惹きつけられる事を確認している。すなわち、メスにとって魅力のあるセンテンスを人工的に作れる。

さらに、親の声と、習った子供の声を比較してそれぞれのセンテンスの UMAP 上の距離を調べると、ほとんどの子供はまだまだ未熟で、距離が短いが、一部の子供では親を超えるケースも現れている。このように、単純な分析ではわからない鳴き声の違いがり、一旦 Siamese convolutional neural network と呼ばれるニューラルネットに媒介させることで、親の声を習うことの難しさが明らかになった。

以上が結果で、動物のコミュニケーション手段を解析するためにいかに AI がパワフルかが明らかになった。

余談になるが、いつもお願いしているバードウォッチングガイドさんが、この AI で区別する違いをコマで区別できるのか知りたいと思う。おそらくガイドさんの脳はメスドリの境地に近づけているのではないかと推察する。いずれにせよ、様々な動物の声を翻訳できる時代に近づいた。

カテゴリ:論文ウォッチ

3月25日 骨髄造血の全像(3月20日 Natureオンライン掲載論文)

2024年3月25日
SNSシェア

増血研究では、骨髄移植、in vitro コロニー法と長期培養、表面マーカーとセルソーターなどを組み合わせて観察が行われるが、実際の骨髄は骨に閉ざされて観察が難しい。それでもさまざまな工夫を重ね、骨髄の切片を作成する組織学的検討は繰り返し行われてきた。ただ、どうしても単一の造血幹細胞に焦点が当たるため、造血ダイナミックスを観察することは難しかった。

今日紹介するシンシナティ子供病院からの論文は、主に胸骨骨髄を用いて、そこで起こっている造血全体を観察することで、試験管内で観察するのとは全く異なる造血ダイナミックスが存在することを示した研究で、3月20日、Nature にオンライン掲載された。タイトルは「Resilient anatomy and local plasticity of naive and stress haematopoiesis(定常およびストレス下での造血は高い解剖学的安定性と局所的可塑性に支えられている)」だ。

この研究では247種類の細胞表面マーカー、セルソーティング、骨髄移植、コロニー法など、従来の造血研究を組み合わせて各種造血幹細胞特定法を確立した後、表面マーカーの多重染色により、それぞれの幹細胞の骨髄中での分布をまず調べている。

その結果、細胞に焦点を当ててみるともちろん全ての幹細胞を特定することができ、白血球や赤血球造血は類洞で、リンパ球造血は小動脈に近接して起こっているのが確認される。そしてこの研究のハイライトと言えるのが、それぞれの幹細胞は局所でコロニーを形成していないと言う発見だ。これは各系統へ分化した幹細胞でも同じで、この結果それぞれの系統は骨髄の別の場所で独立して形成されることになる。

幹細胞は当然増殖を続けている。なのに幹細胞が単独で存在し、局所的なコロニーを作らないと言う事実は、分裂した相手側がすぐにその場所を離れる事を意味する。実際、これを確かめるために、頭蓋骨にラベルした幹細胞を一個だけ導入し、24時間後に観察すると、分裂した娘細胞はその場所から移動している事を確かめている。

赤血球造血についてこの過程をさらに調べているが、分裂した細胞の片方で c-Kit の発現が低下しその場を離れる事を観察している。神経幹細胞の分裂によりできた娘細胞が上部へと速やかに移動するのと似たイメージだ。

細胞のオリジンを調べる標識法を用いてさらに確認実験を行い、赤芽球まで分化した後はクローナルな増殖がはっきりと捉えられるが、それ以前の幹細胞ではクローン増殖は見られない事を確認している。

最後に、個体が出血、感染、あるいはG-CSF投与といったストレスにさらされた時、この骨髄造血を支える構造はどう変化するのかを調べ、基本構造には変化がない事を特に幹細胞の分布から示している。すなわち分裂後娘細胞がニッチを離れると言うシステムが、造血構造の安定性を保証していることになる。ただ、骨によっては類洞や小動脈の構造が異なるため、増殖した細胞が移動する速度が変化する。そのため、それぞれのストレスに対して、腸管骨と胸骨では反応が違って見えることも示している。

結果は以上で、木を見て森を見ずというが、森全体を見ることで造血にも新たな発見がもたらされている。とはいえ、全体を見るために画像解析は欠かせない。将来さらに AI を組み合わせればさらに新しい構造を見ることができるかもしれない。

カテゴリ:論文ウォッチ

3月24日 細胞レベルで全ゲノム解析が行われる時代になった(3月18日 Cell オンライン掲載論文)

2024年3月24日
SNSシェア

ヒトの全ゲノム解析が達成できたあと、個人のゲノムを1000人単位で集める目標が掲げられたのはそれほど遠い昔ではない。その後、ゲノム解析コストは下がりに下がり続け、その結果、全ゲノム解析が終わっている個人の数はいまや膨大な数に上っていると思う。

今日紹介するハーバード大学からの論文は、全ゲノム解析が今や細胞レベルにまで及んできて、個体の中でそれぞれの細胞が経験する変化をゲノムのレベルで読み解ける時代が来たことをひしひしと感じる研究で、3月18日 Cell にオンライン掲載された。タイトルは「Contrasting somatic mutation patterns in aging human neurons and oligodendrocytes(高齢者の神経とオリゴデンドロサイトの対立する突然変異パターン)」だ。

この研究では幼児、青年期、40代、そして80代の脳組織からオリゴデンドロサイト(OGL)、グリア、神経細胞を分離、トータルで150個の細胞について全ゲノム解析を行い、特に OGL と神経細胞で突然変異の起こり方を調べている。ヒト全ゲノム解析完成が高々と歌い上げられたのが2004年なので、20年でここまできたかという感慨は深い。

脳内で OGL は増殖を続けミエリン鞘を供給し続ける一方、神経細胞は原則として増殖することはない。この違いを、ゲノムに蓄積する突然変異から調べようとしている。

まず、一塩基変異で見ると、増殖する OGL は増殖しない神経に比べて2倍頻度が高い。しかし、増殖にかかわらずどちらの細胞も年齢を重ねるにつれ突然変異が蓄積する。面白いのは、Indel と呼ばれる挿入や除去といった変化は神経細胞の方が OGL の頻度より高い。ただこれも、年齢とともに増えていく。このように生きている限り、増殖なしでも我々のゲノムは変化し続ける。

突然変異の起こり方は SBS と呼ばれる変異のタイプで分類されている。いずれの細胞も生存に伴う環境からの影響で起こる SBS5 がメジャーな変異で、年齢とともに増加するが、これに加えてそれぞれ独自の変異タイプが見られる。

増殖を続ける OGL では細胞分裂依存的に増加するデアミナーゼ作用による変異が見られるが、神経細胞では全く見られない。そして、これらの変異は腫瘍化したグリオーマと完全に重なっている。

SBS5 は両方の細胞で見られるメジャーな変異タイプだが、OGL ではクロマチンが閉じた転写活性が、低い領域に集まっている。一方、神経細胞ではその逆で、遺伝子発現が活発な領域で起こっている。おそらく、DNA修復の起こりやすい領域が細胞ごとに違うからと考えられるが、単一細胞ゲノム解析から生まれた新しい問題だと思う。

ほかにも、それぞれの細胞は発生過程で様々な変異を蓄積した後、成熟後細胞の状態に会わせた変異が蓄積していく。これを利用して細胞系譜をたどることも可能だ。しかし、OGL は成熟後もほとんど同じペースで変異を蓄積する。これもおそらく、修復機構が変化した結果と考えられる。

外にもいろいろな可能性が示されているが、ゲノムプロジェクトが細胞レベルへと拡大していることが重要だ。発生、成長、老化を新しい視点で眺められる時代が来た。

カテゴリ:論文ウォッチ

3月23日 閉経の進化(3月21日号 Nature 掲載論文)

2024年3月23日
SNSシェア

人間の女性の一生で閉経は一つの通過点で、平均して寿命の42.5%を閉経後に過ごすことになる。エストロジェンの急速な上昇などを伴う生理サイクルは身体に大きな負担をかけ、さらに乳ガンの研究でもゲノム変異の原因となることを考えると、女性が長生きするためには閉経も合理的な進化だと考えられる。

とはいえ閉経が見られない動物は圧倒的多数で、チンパンジーの閉経後の寿命は全体の2%しかない。また、GPT-4で調べると長生きするようになったペットでもサイクルが乱れることはあっても生理は続くらしい。

では人間以外に閉経は存在しないのか?これまでの研究で、シャチやクジラで確認されている。米国シアトルにある WhaleResearch センターのウェッブサイト(https://www.whaleresearch.com/orcasurvey)によると、閉経後メスが娘や孫の生存に有利に働いていること、例えばサケの餌場を教えるなどの役割を果たしていることが書かれている。

今日紹介する英国のエクセター大学からの論文は、やはり閉経が見られることが知られているハクジラ類の中で閉経が存在する類とそうでない類を比較して閉経の生存優位性を調べた研究で、3月21日 Nature に掲載された。タイトルは「The evolution of menopause in toothed whales(ハクジラでの閉経の進化)」だ。

クジラの寿命や生態については、多くのデータがあるのはよくわかるが、はて閉経の存在をどうして調べるのか興味を持ち、この論文を取り上げたが、調査捕鯨などによりクジラを解体するとき、卵巣を調べると排卵の跡が残っているようで、生理の回数と寿命を比べることで閉経の存在や、閉経後の寿命を推定できる。納得。

この方法でデータが揃っている32種のハクジラを調べると、5種類のハクジラに閉経が認められ、それぞれは独立して進化していることがわかった。この中には当然研究が進んでいるシャチも含まれている。

これまでの研究から、閉経が進化した理由として6つの仮説が提案されており、これらについて検討が行われている。

第一の仮説は長生きのために生理のストレスを抑えたという考え方で、調べてみると閉経が存在するハクジラは全て、ハクジラ全体の平均を超えて長生きする。一方、生殖可能年齢は外のハクジラと同じだ。従って、積極的に閉経を早めたという説は否定される。

ではなぜ閉経後長生きが必要かだが、シャチで示されているように、孫世代、その母親と一緒に長く生活するのが観察される。一方、娘や孫を助けることは、生殖年齢を犠牲にせざるを得ないという可能性は、閉経のあるハクジラでの生殖が他のクジラ以上に効率的であることから否定される。

しかし、長生きして生殖能が維持されると、若い世代の生殖を抑制する可能性があるので、閉経が起こる原因になる可能性については、オスの生殖相手の選択行動からも支持される。一方、オスの寿命につられてメスの閉経が始まったという仮説は、閉経の存在するハクジラでは、メスの方が長生きするので、可能性なしと結論している。

以上が結果で、シャチでの研究があるので、結論へと導かれている気がするが、しかし32種類全てを比べたのがこの研究の売りだと思う。

カテゴリ:論文ウォッチ

3月22日 抗TNF抗体にグルココルチコイドを結合させたADC(3月20日号 Science Translational Medicine 掲載論文)

2024年3月22日
SNSシェア

免疫性の炎症疾患の治療に今も欠かせないのは、一般にはステロイドホルモンとして知られているグルココルチコイドホルモンだ。私も目薬や皮膚の炎症によく使用するが、内服すると一般の人に広く知られる様々な副作用が生じる。現在では、作用経路を減少させて、副作用を抑えたグルココルチコイド受容体(GR)作動薬が開発され、治験が進んでいるが、臨床利用にまでは至っていない。

今日紹介する米国の創薬企業 AbbVie 研究所からの論文は、GR作動薬を免疫性の炎症に使われる抗TNF抗体に結合させ、TNFを細胞膜に発現した細胞だけにGR作動薬を作用させ副作用を抑えられないかを調べた研究で、3月20日号 Science Translational Medicine にオンライン掲載されている。タイトルは「An anti–TNF–glucocorticoid receptor modulator antibody-drug conjugate is efficacious against immune-mediated inflammatory diseases(抗TNF 抗体にグルココルチコイド受容体作動薬を結合させた抗体結合薬は免疫性炎症疾患に効果を示す)」だ。

開発されたのは抗TNF抗体に2個のアラニンをスペーサーにしてGR作動薬を結合させた薬剤で、現在ガン治療によく使われるADCと呼ばれるグループに入る。抗TNF抗体はリュウマチなどの免疫性炎症で広く使われており、こうして開発された ABBV-3373 はまさに抗体とGR作動薬を合体させた効果を期待している。

まずTNFを発現する細胞に ABBV-3373 を作用させると、TNFとともに細胞内に取り込まれ、そのあと2個のアラニン部位が切断され、細胞内に放出されることを確認している。そして、試験管内でLPS刺激による末梢血の IL-6 産生を、TNF抗体のみと比べると、強く抑制できることを示している。

後はマウスの接触性皮膚炎、及びリュウマチ関節炎モデルで ABBV-3373(マウス型に変えている)の効果を調べている。

接触性皮膚炎でTNF抗体のみと比較すると濃度比で30倍ぐらい活性が高い。重要なのは、GR作動薬に見られる副腎皮質抑制効果がかなり抑えられている点で、グルココルチコイド薬から離脱するためのテーパリングというプロセスを必要としない。

マウス関節リウマチモデルでもテストしている。このモデルでは、TNF抗体は効果が低いが、GR作動薬は強い関節炎抑制効果を持つ。ABBV-3373 も同様の効果を示すが、関節炎だけで見ると両者の効果に差はない。ただ、GR作動薬ではマウス体重の低下を抑えることが出来ないが、ABBV-3373 では体重減少は全く認められない。

さらにリウマチの炎症がピークに達してから投与する実験を行い、既に確立した炎症でも抑えられることを示している。

最後に、ボランティアに投与して副腎抑制効果がほとんど見られないこと、また ABBV-3373 投与されたボランティアの末梢血ではTNFを発現した単球の数が低下していることを示している。

以上が結果で、ADCをGR作動薬と結合させて免疫性炎症抑制をさらに高めるというアイデアは面白い。今後、現在開発中のGR作動薬との比較になると思うが、副作用だけでなく、副腎機能抑制を抑えられるのはアドバンテージになる。

驚いたことに、リウマチ性関節炎に対する ABBV-3373 の第二相試験が昨年先行して発表されている。治験論文が先というのは創薬ベンチャーらしいが、効果で見るとTNF抗体のみと比べると、寛解率は高い。ただ、ベースにグルココルチコイドホルモンが投与されているので、今後はグルココルチコイドホルモンを使わない条件での治験が重要になる。

実際、小児のネフローゼなど、グルココルチコイドホルモンを使う副作用が問題になる病気は多い。その意味で、グルココルチコイドの副作用を抑える目的のADCは期待したい。

カテゴリ:論文ウォッチ