論文ウォッチとタイトルをつけてこの HP に掲載した記事は今日で4121に上る。まる10年以上書き続けてきたことになる。続ける過程で最も印象に残るのは、ドイツ・マックスプランク人類進化学研究室から始まった古代ゲノムの解析で、ネアンデルタール人やデニソーワ人のゲノムが私たちホモサピエンスの形成に大きく関わるという驚きだった。
生命科学でも AI が話題の中心になっているが、2025年には人間の脳と AI を比較する研究が一段と進むような予感がする。特に、比較によって AI では難しいことを見つけ出し、新しいアルゴリズムに生かす研究は、我々の脳についても理解が深まると同時に新しいAIの設計につながる。
今日紹介する米国スクリップス研究所からの論文は、脳に学ぶことの重要性を示した研究の典型で、11月18日 米国アカデミー紀要 にオンライン掲載された。タイトルは「Identification of movie encoding neurons enables movie recognition AI(脳の動画エンコーディング方法の特定は動画を認識する AI を可能にする)」だ。
現在の AI の動画認識能力には問題が多いようだ。おそらく大きくて早いコンピュータで計算量をこなせば原理的には動画も認識できると思うが、普通のコンピュータでは難しい。例えば刑事ドラマで今でも監視カメラの映像を粘り強い刑事が徹夜で調べると言ったシーンはこのことを物語っていることになる。
まずこの研究の結論から述べると、動画をエンコードして一つの表象を作成する過程を全てオタマジャクシの視覚系に任せ、それを読み取って学習させた AI と一般的なカメラ画像を学習した AI とで、ペンテトラゾール添加によりシャーレの中のオタマジャクシの泳ぎが変化するのを動画から認識できるか調べている。同じように300回動画を学習させて、薬剤濃度を区別できるか調べると、オタマジャクシの脳を用いた方が的中率が他の AI モデルより高いことを示している。
すなわち、神経回路の処理を受けたあと視蓋に表象される神経興奮パターンは、連続した写真画像を読み取る AI より動画認識能力に優れていることになり、視蓋野で行われている処理を理解することで、なぜ脳の方が優れているのかがわかる。
この研究は、オタマジャクシの視蓋野での神経活動を、まず単純な対象が現れ消えていく短い過程を記録して、処理方法を解析している。対象を見るとき、網膜には対象が明るくなった時に反応する ON 型と、暗くなったときに興奮する OFF 型の神経が存在し、これが視蓋野に投射されている。この研究では、この2種類のシグナルの変化が実際には回転などの動きの認識に関わり、また OFF 型の神経が変化の終わりで正確に興奮することで、動きの認識の重点対象を回りから区別して認識している。
このように特に OFF 型のシグナルを光の変化だけでなく、対象物の変化を捉えるのに使っているのに利用していることが、動画認識を可能にしており、おそらく一般的な AI にはこのアルゴリズムが存在しない。
On/Off 型神経からもわかるように我々の視覚は網膜ですでに因数分解が行われており、これが視蓋野の神経興奮として現れる。この点については、京大医学部時代に親しく交流があった中西先生の On/Off 神経の発見など長い研究の歴史があるが、これを動画認識の点から再検討し、さらに現在の AI と比較したのがこの研究の面白さだ。またオタマジャクシを用いたのも面白い。
さて、昨年アルツハイマー病研究分野での私の一押しは、store operated calcium channel(SOCC)の機能を調節する機構が異常 Tau により破壊され、細胞質のカルシウムバランスが変化することがアルツハイマー病 (AD) 発症に関わる重要な過程で、SOCC の調節に関わる細胞内マトリックスを再構築する薬剤が、AD の進行を止めることができることを示した、ベルギーからの論文だった。この論文が示すことは、小胞体 (ER) と細胞膜の間で Ca イオンをやりとりして局所細胞質の Ca を維持することの重要性だ。
今日紹介するコーネル大学からの論文は、樹状突起から飛び出たスパインでのシナプス刺激を樹状突起全体の興奮に拡大させる細胞膜と ER を統合している分子機構について明らかにした研究で、元旦に紹介するにふさわしい極めて重要な研究だと思って取り上げた。タイトルは「Periodic ER-plasma membrane junctions support long-range Ca 2+ signal integration in dendrites(ERと細胞膜の規則正しく繰り返す接合構造が樹状突起でCaシグナルを遠くへの伝達を支持している)」で、12月20日 Cell にオンライン掲載された。。
この研究では、スパインに張り巡らされた ER が筋肉の収縮を統合する筋小胞体と同じような機能を持つのではと考え、まず樹状突起に存在する ER 構造を調べると、見事にレールのようにつながるネットワークができており、しかも細胞膜との間に VGCC や JPH3 と呼ばれる細胞膜と ER の結合を調節するタンパク質が、規則正しい間隔で並んだ接合部が形成されていることを明らかにする。
この接合部の構造的変化は、スパインの興奮により活性化される CAMKII が接合部に集まって誘導され、神経刺激はスパインの構造を変化させることが知られているが、スパインだけにとどまらず周りの細胞膜と ER 接合部まで変化が及び神経の反応性が決まることがわかる。
さらに、この接合部には ER から Ca を放出して細胞質の Ca 濃度を維持する RyR カルシウムチャンネルとともに細胞質の Ca を調節する SOCC とそれを ER にリンクさせる STIM2 分子も集まっており、興奮局所での Ca イオンのホメオスターシスを維持する複雑な仕組みが集まっていることがわかる。
最後にこの構造の意義を調べるため、1個のスパインを刺激したとき、ER 内での Ca 濃度がどのように変化するかを調べると、なんとスパインから20ミクロン離れた ER まで Ca 濃度の低下が及び、また刺激を繰り返すと ER の Ca 濃度変化が減衰しながらも繰り返されることを観察し、ER からのカルシウム放出に関わる RyR と VGCC が一緒になってスパインからの刺激を樹状突起を通して伝えていることが明らかになった。
以上が結果で、元旦早々難しい論文の紹介になったが、スパインでの刺激が、どのように神経全体で共有されるのかという素朴な疑問に、構造と機能から明確に答える素晴らしい論文だ。さらに、最初に紹介したベルギーの論文を考えると、明らかになった新しい機構は AD の理解にも必須だと思う。AD では神経細胞が失われることだけが問題にされるが、それ以前の神経過程では、シナプスからのシグナル伝達の低下が必ず見られるはずだ。この点でも、この研究の意義は大きい。