感染症の特定には、病原体検査が必須で、様々なチャンネルで検査を増やすことが感染対策の基本になる。オリンピック参加の選手を毎日PCR検査と言ってもなんの不思議も感じない我が国でも、1年前には検査を拡大すること自体ナンセンスといった意見が多くの専門家から聞こえたのは嘘のようだ。
とはいえ、新型コロナウイルスの検査の主流は今もPCRや抗原検査だが、このHPで何度も紹介したように(https://aasj.jp/news/lifescience-easily/13013 、https://aasj.jp/news/watch/8385)、クリスパーを用いた系に変わっていくと予想する。ただ、これまで用いられていたCas12やCas13のように、活性化されると周りの全ての一本鎖DNAを切る性質を用いた場合、ガイドを増やして様々な変異体もカバーすれば、感染を見落とすことはないが、感染している変異体を特定するには、単一のガイドを用いた検査をやり直す必要があった。
今日紹介するビュルツブルグにあるヘルムホルツ感染症センターからの論文は、通常用いられるCas9の新たな可能性を追求する中で、一回の検査でウイルス変異体を特定できる方法を開発した研究で、5月28日号のScience に掲載された。タイトルは「Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9(ホストの転写物中の標準とは違うクリスパーRNAを理解することでCas9のマルチプレックスRNA検出が可能になる)」だ。
CRISPR/Cas9=遺伝子編集と頭の中が固定されてしまっていると、Cas9+ガイドRNAの組み合わせで、ターゲットを切断する過程を想像するだけで終わるが、クリスパーの生物学を研究している人にとっては、ガイドRNAはあくまでもcrRNAとtransactivating crRNA(tracrRNA)が結合したものだ。これを一体化させて遺伝子操作に使ったというのがダウドナさんとシャルパンティエさんの閃きだが、crRNAとtracrRNAを眺めていると、クリスパー領域に存在している遺伝子でなくても、crRNAとして働けるのでは考えるのは当然だ。
この研究ではカンピロバクターの持つCas9に結合する細胞内のRNA を集めてきて、Cas9にリクルートされるRNAの性質を詳しく調べ、tracrRNAと結合してCas9にリクルートされるRNAには、クリスパーシステム領域外に存在する、普通のmRNAの一部が存在していることを発見する。
このnoncannonical crRNAの機能も面白いところだが、著者らはtracrRNAと結合してCas9にリクルートするためのRNA条件を詳しく検討し、こうして得られた条件を元に、tracrRNAの一部に検出したいRNA配列を組み替え、さらにこうしてできたRNAペアにより活性化したCas9に切断させる蛍光ラベルしたインディケーターDNAにも、検出するRNA配列の一部を取り込むことで、サンプルの中に存在する特定のRNA配列に反応して、インジケーターDNAが切断されるという、RNA検出系LEOPARDを完成させている。
このときインジケーターDNAの切断後の長さを変えておくことで、複数の標的を検出し、しかも特定できる。この研究では、アジレント社の電気泳動システムBioanalyzerを用いて、インディケーターの長さを測定するパイロット系を用い、1μlに10コピーの感度で変異ウイルスを特定できることを示している。
この研究では、Bioanalyzerという普及が難しい仕組みを使っているが、将来はインディケーターの標識を複数にしたり、あるいは思い切って変異ウイルスの数だけのマイクロアレーを用いるといった使い方も可能だろう。いずれにせよ、実験室レベルでも、感染と同時に変異株の種類を特定できる検査が可能になったことは、今後の感染症対策にとっても重要だ。
振り返ってみると、大学院にも行ったことがない臨床の医者が、そのままドイツで基礎の研究を許されたことが、人生の転機だった。しかし実際にはプラスミドという言葉さえ知らない初心者が、よくまあなんとかやれたと今考えても冷や汗がでる。留学したケルン大学は、Spring Meetingを毎年開いており、当時の最新研究が聞けたのだが、私にとっては知識の欠如を思い知らされる場所だった。最初参加した会議が、DNAのメチル化についてのシンポジウムで、そのときP.シャンボンの講演で初めてエンハンサーという言葉を聞いたことを、今も不思議に覚えている。
その時から考えると、自分の頭もずいぶん進歩できたことを実感する。エンハンサーについても、常に知識のアップデートを繰り返してきた。今日紹介するカリフォルニア大学サンディエゴ校からの論文は、エンハンサーが特定のプロモーターとペアを組むメカニズムについてアップデートしてくれた面白い論文で、5月26日Natureにオンライン掲載された。タイトルは「Enhancer release and retargeting activates disease-susceptibility genes (エンハンサーの解放と再結合が病気に関わる遺伝子を活性化する)」だ。
エンハンサーとプロモーターの間がルーピングして、両者に結合する分子同士が相互作用して転写が誘導されるという構図は頭の中に入っているし、それがHiCなどの領域間の接触を調べる方法で証明されていることもわかっているが、ではなぜ特定のペアが結合するのかについては、確かに頭の中にもイメージはない。
この研究では、エストロジェンに反応するエンハンサーにより転写のスイッチが入る遺伝子と、そのエンハンサーとトポロジー的に結合する可能性がある、同じトポロジードメイン(TAD)に存在するその他の遺伝子のプロモーターを選んで、それぞれの関係性について調べている。
具体的にはエストロジェンに反応するエンハンサーが通常ペアリングしているプロモーターを欠損させた時、エンハンサーはTAD内の他のプロモーターの転写に影響するかという問いを、細胞レベルで確かめている。なぜこれまでこのような実験が行われなかったのか不思議だが、TADの概念が確立したことで、このような実験が可能になったと思う。
答えは明確で、もともとペアリングしているプロモーターが欠損すると、同じエンハンサーは欠損した遺伝子の代わりに、他のプロモーターに移って、遺伝子転写を誘導することを発見する。すなわち、一つのプロモーターから解放されたエンハンサーは、同じTAD内の他のプロモーターと相互作用するようになる。
このシフトが起こる分子メカニズムを探ると、TAD形成などのルーピングに関わるCTCF分子がプロモーターに結合している場合、エンハンサーの新しい標的になることがわかった。この実験の場合、TFF1という遺伝子のエンハンサー/プロモーターについて調べているが、TFF1プロモーターにはCTCF領域がある。そして、このプロモーターを除去すると、やはりCTCFが結合しているTFF3のプロモーターへ移行し、さらにTFF3のプロモーターも除去すると、CTCFが結合している次のプロモーターに移行するという具合だ。
言い換えると、TCTCFとコヒーシンによりDNAのルーピングが制御されTADが形成されるのと同じメカニズムで、エンハンサーとプロモーターがペアリングする場合があることを示した。
これだけでも十分面白いのだが、この結果は本来ペアリングしているプロモーターのCTCF結合部位に突然変異が入ると、エンハンサーが同じTAD内の他の遺伝子を活性化させてしまう可能性についても検討している。
まず、同じTAD内のガンとは無関係の遺伝子プロモーターの変異により、本来なら作用を受けないガン遺伝子のプロモーターが、本来影響を受けないエンハンサーにより活性化されることを示している。
また、パーキンソン病のリスク遺伝子として知られるRAB7L1の転写が、近くのパーキンソン病とは無関係の遺伝子のプロモーター領域の多型により高められることを示している。
全てのプロモーター/エンハンサーペアが同じメカニズムを使っているわけではないが、病気とは無関係に見える遺伝子の多型も、このメカニズムを介して他の遺伝子の転写に影響するという発見は、遺伝子の変化の意味を知る一つの重要なパイプになると思う。
P.シャンボンの講演以来アップデートを続けてきたエンハンサーの概念をまたアップデートすることができた。