過去記事一覧
AASJホームページ > 2021年 > 6月 > 4日

6月4日 自閉症のゲノム研究4:縦列反復の役割が注目され始めた (自閉症の科学48)

2021年6月4日

自閉症のゲノム研究最終回は、自閉症との関連で最近注目が集まっているTandem Repeat(TR: 縦列反復)の話を取りあげる。専門家でなければ、TRと聞いてもピンとこないのが普通だ。 しかし、TRによって起こる病気、特にCAGといった3塩基の繰り返し数が増大して起こるいくつかの病気の名前については耳にしたことがあるのではないだろうか。最も有名なのはハンチントン病(以前はハンチントン舞踏病とも呼ばれていた)で、おそらく耳にしたことのある人は多いと思う。他にも、このHPで何度か紹介している、自閉症症状を伴うFragile X症候群も、TRが病気の原因になっている。

ハンチントン病の場合、ハンチンティンと呼ばれる分子をコードする遺伝子の中にあるCAG(グルタミンのコード)が繰り返すTRのCAGリピートの数が上昇し、グルタミンがつながったポリグルタミンが細胞内に発現して神経毒性を発揮することで、神経細胞が変性することが知られている。一方、Fragile XはCGGが繰り返すTRのリピート数が増大することで、その領域がメチル化され遺伝子がオフになってしまい病気が起こる。(https://aasj.jp/news/watch/8091)

他にも様々なタイプのTRが存在し、メカニズムは異なるが、細胞や組織の機能を障害し、知られているだけでも50種類以上の病気に関わることが明らかになっている。ただ、Fragile Xを除くと、これまでTRと自閉症との明確な関わりが疑われたことはなかった。

しかし、TRは発生過程でリピートが増減することで、これまで議論してきたde novoの変異に相当する変異を誘発できる。しかも完全なde novoの変異と異なり、リピート数が増減する結果として病気が起こる場合でも、その基盤になるTR自体は親から受け継ぐことから、兄弟姉妹で発症がみられ遺伝性があるように見えても、両親は正常といった、遺伝性の特定が難しかった変異を説明することができる。

そして何よりも、Fragile XのようにTRがエピジェネティックな過程を介して病気を発症させる場合、あらかじめリスクのあるTRを特定して、リピート数の変化やエピジェネティックな変化を抑制し、病気を抑えることも将来可能になると考えられる。(エピジェネティックについての説明はFragile X 記事を参照してください:https://aasj.jp/news/watch/8091

このように自閉症に関わるTRを特定する重要性ははっきりしていたが、実は私たちのゲノムの半分はこのような繰り返し配列から構成されているため、病気と関係すると推定できるTRを発見することは簡単ではなかった。

この困難にチャレンジして、自閉症に関わるTRが存在するかもしれない可能性を示したのが、昨年10月、および今年1月に、それぞれカナダのトロント大学、およびカリフォルニア大学サンディエゴ校から発表された論文だ。

これらの研究が可能になったのは、多くの自閉症のゲノム解析が進んだこと、そして自閉症と相関があることをはっきりと指摘できるTRを発見する情報処理法が開発されたことによるが、詳細は省く(事実、論文の大半は方法の妥当性についてのデータで占められており、私のような素人では判断できない困難が想像できる)。

結論は両方の論文とも同じなので、カリフォルニア大学の論文についてのみ紹介するが、

1)25種類の遺伝子に自閉症児のみにみられるTRを特定することができた。

2)25種類のうちの半分の遺伝子では、自閉症との関わりがあるde novoの突然変異が既に特定されている。すなわち、TRは確かに自閉症に関わるde novoの変異と同じ作用を持つ。

3)TRはこれまで遺伝性が明確でなかったASDの1.6%の原因と考えられる。

4)これらはすべて頻度の低い、いわゆるレア変異に相当する。

ある程度知識がないと、なかなか理解しづらい話だと思うが、ASDゲノムを調べるための新しい方法が加えられたと考えて欲しい。今後それぞれのTRについて、ゲノム研究2で紹介したような、機能を調べる研究が必要で、ぜひその上で、予防や治療手段の開発が可能になればと期待している。

以上、4回にわたって最近急速に進み始めたASDのゲノム研究を紹介した。生殖細胞の形成過程、あるいは発生過程でまれに起こるde novoの変異を知ることが、ASD発症メカニズムを理解するために欠かせないこと、そのため多くのASDの人が参加する、大規模ゲノム研究が着々と進んでいることを理解してもらえれば、この記事を書く目的は十分果たせたと思う。

6月4日 ゲノムトポロジーの種間の差を決める要因(5月28日号 Science 掲載論文)

2021年6月4日

ゲノム情報=核酸配列と思うかもしれないが、決してそうではない。例えばオペロンやホメオボックスといった、遺伝子自体のクラスターといった1次元構築や、さらには3次元トポロジーも、ゲノム自体の重要な情報の一部になっている。

このトポロジーの解読についてはHi-Cを代表とする様々なテクノロジーによりわかってきたが、トポロジーが何により決まっているのかについてはよくわかっていない。

今日紹介するオランダ・ガン研究所からの論文は、トポロジーの種間の差を手がかりに、condensin IIによりこれが調節されていることを示した、面白い研究で5月28日号のScienceに掲載された。タイトルは「3D genomics across the tree of life reveals condensin II as a determinant of architecture type(生命の系統樹を網羅した3DゲノミックスによりコンデンシンIIが構築の形を決めることが明らかになった)」だ。

この研究では、全ゲノムレベルで領域同士の距離を測るHiCを用いて、なんとクラゲから人間まで、様々な多細胞生物のゲノムトポロジーを調べ、それぞれの共通性と差異について比べている。ただ、これだけの種を比較するとなると、 HiCを使えるだけのゲノム解読が進んでいないと難しいため、今回調べた24種のうち、14種については、新たにゲノム解読の精度を自分たちで上げる努力を行なっている。

結果は、一般的な系統とは無関係に、セントロメアやテロメアで異なる染色体間での接触が見られるType Iと、染色体間の接触が少ないType IIに分類できることがわかった。その上で、Type Iと関連する分子を探すと、Type Iをとる蚊では、分裂期に複製されたDNAを正確に分配するコンデンシンII複合体がかけていることに気づく。

そこでコンデンシンがType IとType IIを決める分子かどうか調べるため、Type II型のヒト細胞でコンデンシンII複合体の形成を抑える操作を行うと、なんとセントロメアで異なる染色体同士が接合するType Iへとシフトすることを明らかにする。

ただ、重要なことはこのようなType II vs Type Iのシフトによって転写レベルが変化する遺伝子は、核膜近くのLAD と呼ばれるドメインに固定されて遺伝子転写が抑えられている一部の遺伝子だけで、ほとんど遺伝子発現には変化がないことで、コンデンシンが本来機能している分裂期の一種の適応として起こった変化ではないかと考えている。

これを確かめるため、分裂期をコンデンシンIIの有無で観察してみると、分裂期をへた後G1期でのセントロメアの集合がコンデンシンIIにより抑えられていることがわかる。また、コンデンシンIIがないと、核内で核染色体の領域が混じり合ってしまっていることも示している。

これらの結果から、おそらく染色体の数と長さの変化に適応してコンデンシンIIのレベルが変化し、比較的短いばあいは染色体を濃縮して分離するType II、染色体が長い場合は厳しく染色体を分離しないType Iが分かれたと考えている。

少し専門的だが、同じ種の中でも染色体の数や長さが大きく変化することを考えると、納得いく説明に思える。しかし、コンデンシンIIが欠損したType I細胞を維持し続けると、染色体が融合して長い染色体ができるのだろうか、興味が湧く。

カテゴリ:論文ウォッチ
2021年6月
 123456
78910111213
14151617181920
21222324252627
282930