過去記事一覧
AASJホームページ > 2020年 > 10月

10月3日 ACEが脳で過剰になるとアルツハイマー病のリスクを高める(9月30日号 Science Translational Medicine 掲載論文)

2020年10月3日
SNSシェア

アルツハイマー病(AD)リスクの最大要因は老化だが、このメカニズムを明らかにすることは簡単ではない。その代わりに、様々な遺伝的リスクファクターを明らかにし、それぞれの関与のメカニズムを明らかにし、老化との相関を丹念に調べて、脳細胞の老化について理解するしかない。その意味で、Aβ、Tau、ApoEなどがADにどう関わるのか、また老化とどう創刊するのかメカニズムのさらなる解明が待たれている。

そんな中、今日紹介するテキサスノースウェスタン大学からの論文は、血圧維持に関わる最も重要な因子で、高血圧治療の標的でもあるアンジオテンシン転換酵素(ACE)が、脳細胞の細胞死を促進してアルツハイマー病リスクになりうることを明らかにした研究で9月30日号のScience Translational Meicineに掲載された。タイトルは「Aβ-accelerated neurodegeneration caused by Alzheimer’s-associated ACE variant R1279Q is rescued by angiotensin system inhibition in mice(アルツハイマー病リスクの一つアンギオテンシン転換酵素の変異R127Qにより誘導される神経変性はAβにより促進され、アンジオテンシン系の阻害により治療できる)」だ。

最近の疾患ゲノム研究でADリスク遺伝子の一つとしてACE遺伝子が特定されてきたことに注目し、ADの発生率の高い446家族について全ゲノム解析を行い、ACEのコーデイング領域の変異の中にアルツハイマー病リスクになる変異がないか探索している。その結果、ACEの1279番目のアルギニンがグルタミンに変換した変異(R 1279Q)を持つ家族ではADが頻発することを確認し、この変異がADにつながるメカニズムを、ACEに同じ変異(マウスではR1284Qが相当する)を導入したマウスを用いて検討している。多くの実験が行われているが次のように要約できるだろう。

エクソンのミスセンス変異なので、ACE酵素活性が変化した可能性が考えられるが、この変異は酵素活性については中立的であることがわかる。しかし、脳でのタンパク質の発現を見ると、脳特異的に変異体分子の発現が高まっている。これは、変異によってACEが細胞膜から遊離しにくくなり、その結果分子の発現が高まる結果であることを確認している。すなわちこの変異は、ACEの質的な変異ではなく、脳内でACE 量が上昇させる変異であることがわかった。この結果、アンジオテンシン1から変換されるアンジオテンシン2の量が上昇し、ACE 受容体の活性化が高まる。

この慢性的なアンジオテンシンシグナルの上昇は、神経細胞の慢性的RAS経路の活性化を誘導し、神経細胞の細胞死を誘導するカスパーゼ活性を慢性的に高める。重要なことは、この変異が導入されたモデルマウスでは血圧は正常で、この過程に血管性の神経変性は関わっていないと結論できる。

このように、このACE変異では慢性的に神経細胞死の閾値が低下していることは、このマウスをAβを過剰発現させたマウスを掛け合わせるとADの発症が促進されることからも確認できる。また、ACE阻害剤や、ACE受容体阻害剤を投与することで、この慢性効果を正常化して、ADの進行を止めることも明らかにされた。

以上が、モデルマウスを用いた結果だが、同じプロセスが人間のADでもみられないか調べ、人間のADでもACEを発現する海馬神経が脱落していること、またRAS経路の異常も神経細胞で認められることを示し、ACEシグナル経路が、神経細胞紙の閾値を下げる老化に関わる要因の一つではないかと結論している。

同じ過程が老化とともに一般的なADでも起こっているとすると、脳内でACE受容体シグナルを抑えることは、アルツハイマー病の重要な治療法になる可能性を示唆しており、面白い研究だと思う。

カテゴリ:論文ウォッチ

10月2日 シナプス小胞の動態を厳密に観察する(9月28日号 Nature Neuroscience 掲載論文)

2020年10月2日
SNSシェア

美術の学生さんと話していて感じるのは、半分は生まれつき、半分は訓練で獲得されてきたイメージを把握し、脳内で処理するときの厳密さだ。要するに、私たちが見えても認識できていないものが認識できている。同じ印象は、優れた形態学者と話していても感じる。例えば亡くなった友人、月田さんのセミナーを初めて聞いた時から、この人の脳内でのイメージの処理は全く違っていると感じた。この様な人たちは、頭の中に厳密なイメージが形成されるまで見たとは思はない様で、それが獲得されるまで最大限の努力を傾ける。

今日紹介するジョンズホプキンス大学Watanabe研究室からの論文はプロセスを厳密に見たいという形態学者の執念が感じられる研究で9月28日号のNature Neuroscienceに掲載された。タイトルは「Synaptic vesicles transiently dock to refill release sites(シナプス小胞がトランスミッターを遊離するためのドッキングは一過性)」だ。

私の頭の中のシナプスでの神経伝達過程はかなり以前からアップデートしていない。もちろん、SNAREをはじめとする分子過程についてはある程度アップデートできていても、シナプスに輸送されてきたシナプス小胞が膜直下で神経シグナルが来るのを待って、刺激が来ると膜と融合してトランスミッターを遊離するという形態的イメージはなんら変わっていない。

しかしプロの間では、いくつのシナプス小胞がトランスミッターを遊離するのか、刺激が来るまでの間、ドッキングはどの様に調節されているのか、次の刺激に対してどう小胞が準備されるのかなど、議論が続いていた様だ、

この研究では、Zap-and-freeze法と名付けたシナプスを刺激した後ms単位で組織を高圧急冷して電子顕微鏡で観察する方法を開発し、シナプスで小胞がドッキングし、膜融合する過程を時間を追って追いかけている。すなわち、この研究のハイライトは、シナプスでのプロセスを厳密に見ることを可能にする方法の開発といっていい。実際、シナプスに小胞が集まり、その中のいくつかがアクティブゾーンの膜上にドッキングし、刺激でいくつかが膜と融合する過程を示されると、何が起こっているのか素人の私にもよくわかる。

あとは、ここ技術を使ってプロの間で議論が続く課題に答えている。

  • これは素人の私も習ったことがあるが、刺激に反応して起こる小胞の膜融合とトランスミッターの放出は、一個づつと制限されているのか、それとも複数の小胞が同じ刺激に反応して融合するのかという問題については、複数の小胞が一度に反応できることを示している。さらに、細胞外のカルシウム濃度を上昇させると、なんと一つのアクティブゾーンに10個以上の小胞が融合する像まで見せている。
  • また、おそらくドッキングなどの過程に関わる分子を共有するためか、カルシウムの低い状態ではシナプス内で近接する小胞体同士がセットになってドッキングから融合を行なっている。
  • ドッキングした小胞の融合は5ms程度の早い過程で、11ms以降に見られる融合は刺激とは無関係。驚くことに、それぞれの融合過程が起こりやすい場所も違っており、刺激により膜上で進むプロセスの局在をさらに明らかにすることの重要性を物語っている。
  • 個人的に最も面白かったのは、アクティブゾーンへの小胞のドッキングが一方向の過程でない点だ。これまで、ドッキング、融合は不可逆的に起こると思ってきた。しかし、ドッキングした小胞の一部は融合し消失するが、残りは膜から離れて次の待機ゾーンへと後退し、次の刺激を待つというダイナミックな過程が示された。
  • 刺激後14ms以内に新しい小胞のドッキングが準備され次の刺激に備えられる。しかし、そのまま刺激がないとドッキングした小胞は減少し、回復には10秒近くかかる。

以上、シナプス小胞が伝達のアクティブゾーンと、レザバーとを動的に行ったり来たりして、持続的な伝達能力を維持していることを見ることができた。しかし、生化学的プロセスだとあまり気にならないが、これを書いている間に私の脳内の数え切れないシナプスで、こんなことが起こっているのかと考えると、本当に驚いてしまう。

カテゴリ:論文ウォッチ

ネアンデルタール人遺伝子の呪いが新型コロナウイルス感染重症化に関わる(本日Natureオンライン掲載論文)

2020年10月1日
SNSシェア

今日の論文ウォッチをアップロードした後(こちらも臨床的には重要な論文なのでぜひ目を通して下さい:https://aasj.jp/news/watch/13990)、新しいNatureを読み始めたら、ゲノム人類学の父とも呼べるSvante Pääboさんの研究室から驚くべき論文が目に飛び込んできた。

論文を要約すると、新型コロナウイルス重症化の遺伝的リスク探索から特定されてきた3番染色体の領域の人類学的由来を調べると、Vinjaで発見されたネアンデルタール人ゲノムにほぼそのまま残っており、このネアンデルタール人グループとの交雑を通して、我々ホモサピエンスに流入した領域であるというのだ。

そして、このリスク遺伝子が最も保持されているのが南アジア、特にインド、バングラデッシュの人たちで、次がヨーロッパ、米国ときて、我々東アジア人にほとんど存在していないことを示している。もちろんネアンデルタール人との交雑が見られないアフリカの人たちには全く存在しない。

以上が結果で、最初に特定された新型コロナウイルス重症化のリスク遺伝子がネアンデルタール人由来であるという話は話題を呼ぶと思う。ただ、私は偉大なゲノム人類学者Pääboさんの論文を読んで、新型コロナウイルスとの戦いが、全ての生命科学分野を動員する戦いとして行われていることを実感した。

最後に強調しておきたいのは、ネアンデルタール人由来領域は新型コロナウイルス感染重症化に関わる一つの要因でしかなく、全てをネアンデルタール人の呪いのせいにしない様お願いしたい。

しかしPääboさんに脱帽。

10月1日 CAR-T療法の思わぬ副作用。(10月1日号 Cell 掲載論文)

2020年10月1日
SNSシェア

このブログでも何度も紹介したがガン細胞上の抗原に対する抗体をT細胞受容体と合体させたキメラ抗原受容体T細胞治療の効果は目を見張るもので、半数近くが長期間完全寛解をはたす。そして白血病細胞だけでなく、同じCD19抗原を発現しているB細胞も完全に除去されるのをみると、免疫システムの威力を改めて感じさせる。

ただ、抗原刺激によるサイトカインストームは最初の段階から副作用として指摘されており、CD19を標的とするCAR-Tの場合、全身にB細胞も存在することから、神経への障害も含めてほとんどの副作用はサイトカインストームによるとされてきた。

今日紹介するスタンフォード大学からの論文はCD19を標的とするCAR-T治療に起因する神経障害がなんと脳血管の周囲細胞がCD19を発現していたために障害された可能性を示す、臨床的には重要な論文で10月1日号Cellに掲載された。タイトルは「Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies(脳のsingle cell解析により血管周囲細胞がCD19を発現してCAR-T免疫治療のオフターゲット標的になることが明らかになった)」だ。

CAR-Tによる神経障害がB細胞以外の細胞がCD19を発現しているのではないかと睨んだ著者らは2500人近くの脳のsingle cell RNA発現解析データを解析し、脳全体では0.2%程度の細胞が血管周囲細胞遺伝子とともにCD19を発現していることを発見する。極めて少ない集団なので、本当かどうか慎重に確かめる実験を行い、平滑筋も含む多くの周囲細胞が脳ではCD19を発現していると結論し、人間の脳の免疫染色でもこれを確認している。発現量だが、幼児期に高く年齢とともに低下する。また、ほぼ脳の周囲細胞だけで発現が認められる。

以上の結果をもとに、マウスモデルでCD19に対するCAR-Tを注射して脳の変化を調べている。人間と比べてマウスの周囲細胞はCD19の発現が高くはないが、周囲細胞が脱落し脳血管関門の機能が低下し、アルブミンが浸出することを発見している。

以上が結果で、臨床的には重要な指摘だと思う。もちろん、生存期間など患者さんへのベネフィットは大きく、副作用の可能性としてあらかじめ理解していただくしかないが、脳以外の組織では発現がないことから、脳血管周囲細胞の発現する他の抗原を用いて、CAR-Tの作用を抑えるといった治療法も考えられる。ただ、費用の面から現実的かどうかはよくわからない。

読んでいて、脳血管周囲細胞の障害性をモニターする目的で、脳血管の窓口とも言える網膜血管を調べるのも面白いのではと思った。現在クリニックを開業している植村君は、網膜周囲細胞のsingle cell 解析を行なっていた様に記憶しているので、脳と同じ様に発現がみられるなら、障害性を早期発見するために役立つかもしれない。

カテゴリ:論文ウォッチ
2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031