過去記事一覧
AASJホームページ > 2019年 > 12月 > 9日

自閉症の科学35 自閉症スペクトラム(ASD)と注意力欠如/多動症(ADHD)の遺伝的共通性

2019年12月9日
SNSシェア

今日は久しぶりにゲノム解析の話を取り上げる。少し難しいかなとは思うが、ASDやADHDを病気ではなく、脳の多様性として捉える時のカギになる分野で、まだまだ研究は始まったばかりだ。その意味で、多くの読者が無理してもフォローして欲しいなと願っていいる。

今日紹介したい論文(Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants, Nature Neuroscience, 2019: https://doi.org/10.1038/s41593-019-0527-8 )

自分の小学校時代を思い返すと、「じっとするのが苦手、思ったことを口にする、整理整頓が苦手で、忘れ物が多い」という、注意欠如/多動症(ADHD)ともいえる性格を持っていた。担任の先生も心配したのか、一度だけだが学校の指示で児童相談所で診察を受けた覚えがある。今ならADHDと診断がついていたと思うが、幸い学業や学校での生活には全く問題を感じておらず、その後いくつかの症状は治ることなく続いて今に至っている。

実際、現在ADHDの発症頻度は5%を超えていると言われており、普通にみられる性格のタイプと言ってもいい。あまりに普通で境がはっきりしないためか、ASDについては多くのゲノム研究が発表され、100を超す遺伝子多型が発見されている一方、ADHDに関連する遺伝子多型の解析は遅れていた。しかし、一卵性双生児を用いた研究からADHDの一致率は高く、精密な多型解析の必要性は高い。また、片方がASDと診断されたケースで、もう片方がADHDと診断されることも多く、両者の状態の遺伝的背景に何らかの共通性があるのではと考えられてきた。

これらの問題を解決しようと、デンマーク・オーフス大学と、ハーバード大学を中心とする国際グループは、各国の多型解析データベースを統合してASD、ADHDの遺伝子多型解析を行い、今年相次いでNature Geneticsに発表した。詳細は省くが、ADHDも多くの遺伝領域の多型が重なり合った結果生まれる神経多様性の一つの状態であることが確認され、またADHDと診断される高いリスクに関わる多型も12種類特定された。しかし期待に反して、こうしてリストされた高いリスク遺伝子多型の中にはASDの多型とオーバーラップするものはほとんど存在しなかった。

ただ、これまで疾患のリスクに関連するとして特定されてきたほとんどの遺伝子多型は、タンパク質に翻訳されない部分(イントロン)に見られる多型で、特定の一つの多型を取り出してその意味を調べても、その意味はほとんどわからずじまいで終わることが多い。そのため、2種類の病気の遺伝背景を知ろうと思うと、多くの小さな変異を積み重ねた結果を計算して関係を推測する必要があり、まだまだ時間がかかると思われる。

そこで著者らは、小さな遺伝的変化を基礎にした遺伝子多型の研究から少し離れて、タンパク質の大きさが変化するような稀な変異に絞って、ASDとAHDHで調べたのが3番目の論文だ。一部の明確な遺伝子変異が原因のASDと異なり、ほとんどのASDでは、まずタンパク質の大きな構造変化を伴うような変異は存在しないと考えられてきた。このグループは、よく調べればそんな変異も見つかるのではと、何千人もの血液サンプルから、タンパク質に翻訳される部分を全て解読して、大きな変異を探索した。

詳細は省いて結論だけをまとめると、

  • 典型児と比べると、ASDもADHDもこのような稀な変異が見られる頻度は高い。
  • ASDとADHDでリストされる変異遺伝子にはほとんど差がなく、稀で大きなタンパク質の構造変異に限ればASDもADHDもほぼ同じ。
  • もっとも多くのケースに見られたのが、神経発生時の細胞骨格の形成に必要なMAP1A遺伝子の変異で、ASDやADHDに神経発生時の変化が関わる可能性が示された。

となる。「視点を変えれば、ADSとADHDは高い遺伝的共通性を持っている。おそらく、タンパク質の構造変化を伴う様々な遺伝子の変異の上に、小さな遺伝的変化が積み重なって特徴的な症状が形成される」が結論だろう。

これまでタンパク質に翻訳される遺伝変化が原因で起こるASDのケースは、稀とはいえ知られている(例えばレット症候群)。これらの遺伝子変異ほど高い決定性はないとはいえ、今回トップ15にリストされたASD,ADHD両方に見られる変異も、神経細胞機能に何らかの影響を及している可能性がある。とすると、それぞれの分子の機能を丹念に調べることで、ASDやADHDの新しい理解へと進展するような予感がする。

「だからなんなの?」と言われそうだが、タンパク質の構造が変化する変異は研究が易しい。その意味で、私はこの研究の重要性は大きいと感じている。おそらく、理系の学生さんにとっても難しい内容かもしれないが、今後もできるだけASDのゲノム研究の進展は紹介していくつもりだ。


12月9日 ゲノム解析とエピゲノム解析を統合する(11月29日号Science掲載論文)

2019年12月9日
SNSシェア

いつも学生さんに講義するとき、21世紀の生命科学がダーウィンの進化論と20世紀シャノンやチューリングの情報科学という、非物理的因果性を追求してきた流れがゲノム研究として交わった所に生まれた大きな渦だと、私の歴史観を述べたうえで、21世紀の重要な課題は、ゲノム、エピゲノム、脳回路、言語・文字など媒体としては独立した情報の集まりを統合することだと強調している。

20世紀の後半からゲノム研究が進み、病気の多型解析などが進んだが、21世紀の最初の統合の動きは、リストされた多型の意味を探る目的で行われてきた遺伝子発現と多型解析の統合に典型的に見られていると思う。

今日紹介するカリフォルニア大学サンディエゴ校からの論文は、遺伝子発現を染色体構造情報に置き換えて多型と統合できないか模索した研究で、11月29日号のScienceに掲載された。タイトルは「Brain cell type–specific enhancer–promoter interactome maps and disease-risk association(脳の細胞特異的エンハンサーとプロモーターの相互作用地図と病気のリスク)」だ。

もともとこの大学はエピゲノムの素晴らしいデータベースで有名で、現役時代門外漢の私も論文を読みながら興味が湧いた遺伝子のエピゲノムをこのデータベースで調べていた。この研究では、人間の脳からミクログリア、ニューロン、オリゴデンドロサイト、そしてアストロサイトを分離し、その核のクロマチン構造を、ATAC-seq(クロマチンがオープンかクローズかを調べる)、とゲノム状のヒストン修飾、H3K27ac(活動しているエンハンサー)、そしてH3K4me3(活動しているプロモーター)を特定し、さらにプロモーターやエンハンサーとは2次元的には離れていても、立体的には接して存在しているゲノム領域を調べるPLACと呼ばれる方法を用いて解析している。

膨大なデータで、データベースができたという点がハイライトなので、詳細は省く。もちろん予想通り、遺伝子発現、H3K27ac、H3K4me3はほぼ一致している。さらに染色体構造を調べる方法が合わさるおかげで、それぞれのエンハンサーやプロモーターの相互作用も同時に調べることができ、例えばSALL1遺伝子領域ではミクログリアだけでスーパーエンハンサーが形成されているのが特定できる。

次に、こうして解析した染色体構造を、これまで発表されている遺伝子多型解析結果と統合させている。基本的にはどの病気の多型解析にでも使えるが、この研究ではアルツハイマー病の多型解析と比べている。

もちろんそれぞれの細胞ごとにアルツハイマー病と関連する多型を特定できるが、中でも多いのがミクログリアで、結果か原因かはともかく、アルツハイマー病にミクログリアが深く関わっていることがわかる。

さらに重要なのは、ヒストン修飾や遺伝子発現からだけではわからなかった、多型が見られる領域同士の相互作用がはっきりと見られることで、いくつかの遺伝子を例として詳しく解析しているが、詳細は割愛する。

これらのデータも、この大学のデータベースで公開されると思うので、ぜひ多くの若手研究者が利用して、宝の山を当てて欲しいと思う。これはほんの始まりだが、もっと面白い新しい発想の生命情報の統合が進んでいくことが期待される。

カテゴリ:論文ウォッチ
2019年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031