CRISPRで変異を正常化することが遺伝子治療の究極の目標だと思う。特に、X染色体にある変異の場合、正常遺伝子を導入することは、変異を持つ細胞には良いが、正常な方の細胞では発現が高まり複雑な症状が生まれる心配もある。しかし、今のところ遺伝子ノックアウトの効率は高くとも、正確にコドンを変化させるとなると、まだまだ先の話だ。
この問題を、まだコドン表などができない昔に発見されたamber変異を用いて解決するための条件を探ったのが、今日紹介するMassachusetts Chan Medical Schoolからの論文で3月23日Natureにオンライン掲載された。タイトルは「AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice(AAVベクターを用いてサプレッサーtRNAを導入するとマウスのナンセンス変異を克服できる)」だ。
サプレッサーtRNAは極めて懐かしい名前で、若い人たちはもはや習っていないのではと思う。かくいう私も、なぜアンバー変異と呼ぶのかは把握していないが、ストップコドンの一つ、アンバーコドン(UAG)を他のアミノ酸に代えることで、premature terminationを防いで正常なタンパク質を合成できるようにする、tRNA側の変異を意味する。
突然変異の多くは、変異により本来のストップコドンより前にストップコドンが現れ、正常なタンパク質ができず、mRNAもすぐに壊れるため、機能分子を作れない。そこで、premature terminationコドンを、UAGを認識してアミノ酸を付加できるAmber suppressor tRNAを導入することで、一つアミノ酸は変化しても、ともかく完全なタンパク質を合成させようという方法が可能かどうか検証することがこの研究の目的だ。
この研究ではpremature terminationコドンを導入した蛍光分子の遺伝子の活性をレスキューする実験で、UAGストップコドンにチロシンを導入できるtRNAが、遺伝子変異を高率にレスキューできることをまず明らかにしている。
あとはこのsuppressor tRNA(変異を抑制できるという意味で付けられる名前)を、培養細胞、そして遺伝子変異を持ったマウスの肝臓に、アデノ随伴ウイルスを用いて導入し、機能分子の合成を復活できるか調べている。
何十年も前にアンバー変異として見つかっているのだから、うまくいくのが当然と思われるかもしれないが、遺伝子治療に使うにはいくつかの問題がある。
1)ストップコドンを認識するtRNAは複数存在するので、うまく導入したsuppressor tRNAが結合して完全なアミノ酸ができる確率はどの程度なのか?
2)そして何よりも、本来のストップコドンが機能しないため、異常タンパク質ができて細胞機能を低下させないか?
結果だが、マウス肝臓ではたらくiduronidaseにpremature terminationが入った変異は、このsuppressor tRNAを導入することで、ほぼ完全に回復させることができている。
一方、異常タンパク質の合成など副作用のほうだが、たしかにストップコドンを超えて作られるタンパク質もはっきり存在するが、細胞にとって十分処理できる程度で止まっている。
以上が結果で、確かにsuppressor tRNAがpremature terminationが起こる変異の場合は、かなり期待できる遺伝子治療になる可能性を示している。Amber変異を発見した人は、おそらく亡くなっていると思うが、富沢、小関先生が訳された「大腸菌の性と遺伝」を読んで知ったAmber変異が現在に蘇った気がした。